login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130484
a(n) = Sum_{k=0..n} (k mod 6) (Partial sums of A010875).
22
0, 1, 3, 6, 10, 15, 15, 16, 18, 21, 25, 30, 30, 31, 33, 36, 40, 45, 45, 46, 48, 51, 55, 60, 60, 61, 63, 66, 70, 75, 75, 76, 78, 81, 85, 90, 90, 91, 93, 96, 100, 105, 105, 106, 108, 111, 115, 120, 120, 121, 123, 126, 130, 135, 135, 136, 138, 141, 145, 150, 150, 151, 153
OFFSET
0,3
COMMENTS
Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 6, A[i,i]=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010
FORMULA
a(n) = 15*floor(n/6) + A010875(n)*(A010875(n) + 1)/2.
G.f.: (Sum_{k=1..5} k*x^k)/((1-x^6)*(1-x)) = x*(1 - 6*x^5 + 5*x^6)/((1-x^6)*(1-x)^3).
MAPLE
seq(coeff(series(x*(1-6*x^5+5*x^6)/((1-x^6)*(1-x)^3), x, n+1), x, n), n = 0 .. 70); # G. C. Greubel, Aug 31 2019
MATHEMATICA
Accumulate[Mod[Range[0, 70], 6]] (* or *) Accumulate[PadRight[ {}, 70, Range[0, 5]]] (* Harvey P. Dale, Jul 12 2016 *)
PROG
(PARI) a(n) = sum(k=0, n, k % 6); \\ Michel Marcus, Apr 28 2018
(PARI) a(n)=n\6*15 + binomial(n%6+1, 2) \\ Charles R Greathouse IV, Jan 24 2022
(Magma) I:=[0, 1, 3, 6, 10, 15, 15]; [n le 7 select I[n] else Self(n-1) + Self(n-6) - Self(n-7): n in [1..71]]; // G. C. Greubel, Aug 31 2019
(Sage)
def A130484_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x*(1-6*x^5+5*x^6)/((1-x^6)*(1-x)^3)).list()
A130484_list(70) # G. C. Greubel, Aug 31 2019
(GAP) a:=[0, 1, 3, 6, 10, 15, 15];; for n in [8..71] do a[n]:=a[n-1]+a[n-6]-a[n-7]; od; a; # G. C. Greubel, Aug 31 2019
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, May 31 2007
STATUS
approved