The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130481 a(n) = Sum_{k=0..n} (k mod 3) (i.e., partial sums of A010872). 31
 0, 1, 3, 3, 4, 6, 6, 7, 9, 9, 10, 12, 12, 13, 15, 15, 16, 18, 18, 19, 21, 21, 22, 24, 24, 25, 27, 27, 28, 30, 30, 31, 33, 33, 34, 36, 36, 37, 39, 39, 40, 42, 42, 43, 45, 45, 46, 48, 48, 49, 51, 51, 52, 54, 54, 55, 57, 57, 58, 60, 60, 61, 63, 63, 64, 66, 66, 67, 69, 69, 70, 72, 72 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Essentially the same as A092200. - R. J. Mathar, Jun 13 2008 Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 3, A[i,i]:=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 24 2010 2-adic valuation of A104537(n+1). - Gerry Martens, Jul 14 2015 Conjecture: a(n) is the exponent of the largest power of 2 that divides all the entries of the matrix {{3,1},{1,-1}}^n. - Greg Dresden, Sep 09 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA a(n) = 3*floor(n/3) + A010872(n)*(A010872(n) + 1)/2. G.f.: x*(1 + 2*x)/((1-x^3)*(1-x)). a(n) = n + 1 - (Fibonacci(n+1) mod 2). - Gary Detlefs, Mar 13 2011 a(n) = floor((n+1)/3) + floor(2*(n+1)/3). - Clark Kimberling, May 28 2010 a(n) = n when n+1 is not a multiple of 3, and a(n) = n+1 when n+1 is a multiple of 3. - Dennis P. Walsh, Aug 06 2012 a(n) = n + 1 - sign((n+1) mod 3). - Wesley Ivan Hurt, Sep 25 2017 a(n) = n + (1-cos(2*(n+2)*Pi/3))/3 + sin(2*(n+2)*Pi/3)/sqrt(3). - Wesley Ivan Hurt, Sep 27 2017 a(n) = n + 1 - (n+1)^2 mod 3. - Ammar Khatab, Aug 14 2020 MAPLE seq(coeff(series(x*(1+2*x)/((1-x^3)*(1-x)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Aug 31 2019 MATHEMATICA a[n_]:= Floor[(n+1)/3] + Floor[2(n+1)/3]; Table[a[n], {n, 0, 80}] (* Clark Kimberling, May 28 2012 *) a[n_]:= IntegerExponent[A104537[n + 1], 2]; Table[a[n], {n, 0, 80}]  (* Gerry Martens, Jul 14 2015 *) CoefficientList[Series[x(1+2x)/((1-x^3)(1-x)), {x, 0, 80}], x] (* Stefano Spezia, Sep 09 2018 *) PROG (PARI) main(size)=my(n, k); vector(size, n, sum(k=0, n, k%3)) \\ Anders HellstrÃ¶m, Jul 14 2015 (PARI) first(n)=my(s); concat(0, vector(n, k, s+=k%3)) \\ Charles R Greathouse IV, Jul 14 2015 (PARI) a(n)=n\3*3+[0, 1, 3][n%3+1] \\ Charles R Greathouse IV, Jul 14 2015 (MAGMA) [Floor((n+1)/3) + Floor(2*(n+1)/3): n in [0..80]]; // G. C. Greubel, Aug 31 2019 (Sage) def A130481_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P(x*(1+2*x)/((1-x^3)*(1-x))).list() A130481_list(80) # G. C. Greubel, Aug 31 2019 (GAP) List([0..80], n-> Int((n+1)/3) + Int(2*(n+1)/3)); # G. C. Greubel, Aug 31 2019 CROSSREFS Cf. A010872, A010873, A010874, A010875, A010876, A010877, A130482, A130483, A130484. Sequence in context: A337019 A196245 A092200 * A145805 A277192 A098238 Adjacent sequences:  A130478 A130479 A130480 * A130482 A130483 A130484 KEYWORD nonn,easy AUTHOR Hieronymus Fischer, May 29 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 00:34 EST 2020. Contains 338943 sequences. (Running on oeis4.)