login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367842
Decimal expansion of limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2).
4
1, 2, 3, 4, 5, 6, 0, 1, 9, 5, 3, 9, 7, 9, 9, 8, 9, 7, 3, 8, 1, 7, 4, 1, 8, 5, 3, 0, 0, 7, 8, 2, 7, 1, 8, 9, 4, 7, 4, 4, 3, 7, 2, 7, 7, 0, 9, 3, 9, 5, 6, 3, 0, 2, 4, 7, 5, 6, 6, 9, 9, 2, 0, 8, 2, 3, 4, 5, 7, 0, 6, 5, 4, 7, 1, 9, 5, 1, 8, 4, 1, 7, 2, 4, 6, 9, 9, 4, 8, 6, 3, 9, 0, 2, 6, 4, 1, 9, 3, 5, 0, 8, 6, 0, 4
OFFSET
1,2
COMMENTS
Limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(1/n) = sqrt(2*Pi).
FORMULA
Equals (2*Pi)^(1/4) / A, where A = A074962 is the Glaisher-Kinkelin constant.
Equals A010767 * A092040 / A074962.
Equals exp(Integral_{x=0..1} x*log(Gamma(x)) dx).
EXAMPLE
1.23456019539799897381741853007827189474437277093956302475669920823457...
MATHEMATICA
RealDigits[(2*Pi)^(1/4)/Glaisher, 10, 120][[1]]
Exp[Integrate[x*Log[Gamma[x]], {x, 0, 1}]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Dec 02 2023
STATUS
approved