login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010880 n mod 11. 11
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..77.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,1).

FORMULA

Complex representation: a(n)=(1/11)*(1-r^n)*sum{1<=k<11, k*product{1<=m<11,m<>k, (1-r^(n-m))}} where r=exp(2*pi/11*i) and i=sqrt(-1). - Hieronymus Fischer, Sep 30 2007

Trigonometric representation: a(n)=(1024/11)^2*(sin(n*pi/11))^2*sum{1<=k<11, k*product{1<=m<11,m<>k, (sin((n-m)*pi/11))^2}}. - Hieronymus Fischer, Sep 30 2007

G.f.: g(x)=(sum{1<=k<11, k*x^k})/(1-x^11). - Hieronymus Fischer, Sep 30 2007

Also: g(x)=x(10x^11-11x^10+1)/((1-x^11)(1-x)^2). - Hieronymus Fischer, Sep 30 2007

MATHEMATICA

PadRight[{}, 80, Range[0, 10]] (* Harvey P. Dale, Nov 13 2012 *)

PROG

(Sage) [power_mod(n, 11, 11)for n in xrange(0, 78)] # - Zerinvary Lajos, Nov 07 2009

(PARI) a(n)=n%11 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Partial sums: A130489. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487, A130488.

Sequence in context: A297235 A090175 A275010 * A261424 A097462 A210944

Adjacent sequences:  A010877 A010878 A010879 * A010881 A010882 A010883

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Correction. Typo at the sum formula for the g.f.: the summation index should not read "1<=k<10" but "1<=k<11" (see corrected formula).

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 07:50 EDT 2019. Contains 328106 sequences. (Running on oeis4.)