OFFSET
0
COMMENTS
For n == 2,4, or 5 mod 7, a(n) = 1 [K. G. Ramanathan, p. 149, Corollary 1].
For n == 0,1,3, or 6 mod 7, it appears that a(n) = 0 in about 80% of the cases.
LINKS
Washington Bomfim, For n mod 7 = 2,4,5, a(n) = 1. WHY?
K. G. Ramanathan, Ramanujan and the congruence properties of partitions, Prec. Indian Acad. Sci. (Math. Sci.), Vol. 89, Number 3, (1980), 133-157.
EXAMPLE
a(0) = 0 because N = 243, p(243) = 133978259344888 = 2^3 * 7^2 * 97 * 5783 * 609289, so v(p(N)) = 2. Also 24*243 - 1 = 7^3 * 17, and v(24*N-1) = 3.
PROG
(PARI) a(n) = my(N = 243 + n*343); (n%7==2)||(n%7==4)||(n%7==5) || valuation(numbpart(N), 7) >= valuation(24*N-1, 7);
CROSSREFS
KEYWORD
nonn
AUTHOR
Washington Bomfim, May 09 2021
STATUS
approved