login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344122
Triangle T(n,k) read by rows in which n-th row gives all tree-able degree sequences S of n nodes encoded as Product_{k in S} prime(k); n >= 2, 1<= k <= A000041(n-2).
2
4, 12, 40, 36, 112, 120, 108, 352, 336, 400, 360, 324, 832, 1056, 1120, 1008, 1200, 1080, 972, 2176, 2496, 3520, 3136, 3168, 3360, 4000, 3024, 3600, 3240, 2916, 4864, 6528, 8320, 9856, 7488, 10560, 9408, 11200, 9504, 10080, 12000, 9072, 10800, 9720, 8748, 11776, 14592, 21760
OFFSET
2,1
COMMENTS
Tree-able degree sequences are degree sequences that can be realized as trees [Stern].
The partitions of n-2 are given in nondecreasing order of length/lex.
EXAMPLE
Triangle T(n,k) begins:
n/k 1 2 3 ...
2 4;
3 12;
4 40, 36;
5 112, 120, 108;
6 352, 336, 400, 360, 324;
7 832, 1056, 1120, 1008, 1200, 1080, 972;
8 2176, 2496, 3520, 3136, 3168, 3360, 4000, 3024, 3600, 3240, 2916;
...
Row 5 is 112, 120, 108 because prime(1) = 2, prime(2) = 3, prime(3) = 5, and prime(4) = 7. The tree-able degree sequences of 5 nodes, related tree realization and encode are given below.
[4, 1, 1, 1, 1] o 7*2*2*2*2 = 112.
( ) ( )
o o o o
[3, 2, 1, 1, 1] o 5*3*2*2*2 = 120.
/ | \
o--o o o
[2, 2, 2, 1, 1] o--o--o--o--o 3*3*3*2*2 = 108.
PROG
(PARI) \\ Gives row n of triangle, n >= 2.
Row(n)={my(j=1, V=vector(numbpart(n-2))); forpart(P=n-2,
V[j] = prod(k = 1, #P, prime(P[k] + 1)); V[j] <<= (n-#P); j++ ); V };
CROSSREFS
Cf. A000041, A000055, A003946 (last terms in rows), A215366, A265127 (first column).
Sequence in context: A149331 A009532 A248325 * A328533 A265127 A056274
KEYWORD
nonn,look,tabf
AUTHOR
Washington Bomfim, Jun 02 2021
STATUS
approved