

A340757


Counterexamples to a conjecture of Ramanujan about congruences related to the partition function.


3



243, 586, 1272, 2301, 2644, 2987, 3673, 4702, 5045, 5388, 6074, 7103, 7446, 7789, 8475, 9504, 9847, 10190, 10876, 11905, 12248, 12591, 13277, 14306, 14649, 14992, 15678, 16707, 17050, 17393, 18079, 19108, 19451, 19794, 20480, 21509, 21852, 22195, 22881, 23910
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For b in 5,7,11, and all integers n,e >= 1, Ramanujan conjectured that if (24*n1) is divisible by b^e, the partition function p(n) = A000041(n) is also divisible by b^e.
Chowla found the first counterexample a(1) = 243. Watson showed the conjecture holds for b=5, and Atkin showed it holds for b=11. Watson showed p(n) is divisible by 7^floor((d+2)/2) when 24n1 is divisible by 7^d, so that exceptions here are restricted to 24n1 == 0 (mod 7^3), which is n == 243 (mod 7^3).
See A340957 for the converse, those n == 243 (mod 7^3) where the conjecture does hold.


LINKS

Table of n, a(n) for n=1..40.
A. O. L. Atkin and P. SwinnertonDyer, Some Properties of Partitions,, Proceedings of the London Math. Soc., V. s34, Issue 1, pp. 84106, (1954)
A. O. L. Atkin and S. M. Hussain, Some Properties of Partitions II, Trans. Amer. Math. Soc. 89, pp. 184200 (1958).
Hansraj Gupta, Partitions  A Survey, Journal of Research of the National Bureau of Standards  B. Mathematical Sciences Vol. 74B, No. 1, JanuaryMarch 1970. See section 6.1.
D. H. Lehmer, On a conjecture of Ramanujan, J. London Math. Soc. 11, 114118 (1936).
D. H. Lehmer, On the HardyRamanujan Series for the partition function,, J. London Math. Soc. 12, 171176 (1937).
G. N. Watson, A New Proof of the RogersRamanujan Identities, J. London Math. Soc., V. s14, 1, Pages 49. (1929).
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen. J. Reine Angew. Math. (Crelle), 179 (1938), 97128.
Eric Weisstein's World of Mathematics, Partition Function Congruences.
Index entries for related partitioncounting sequences


EXAMPLE

243 is a term because for n = 243, the condition of Ramanujan (24*n  1) divisible by b^e is true, and p(n) is not divisible by (b^e). [We have base b=7, and exponent e=3 in this case.] Since a(1) = A182719(91), 90 numbers satisfy the conjecture before the first counterexample a(1).


PROG

(PARI) seq(x) = {my( n = 100, N=0); while(N < x, n += 343; if(valuation(numbpart(n), 7) < valuation(24*n1, 7), print1(n", "); N++)) };
seq(100); \\ Gives the first 100 terms of the sequence.


CROSSREFS

Cf. A000041, A052462, A052465, A052466, A182719, A340957.
Sequence in context: A157958 A232924 A067838 * A255111 A331613 A255626
Adjacent sequences: A340754 A340755 A340756 * A340758 A340759 A340760


KEYWORD

nonn,easy


AUTHOR

Washington Bomfim, Jan 19 2021


STATUS

approved



