Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #121 Feb 24 2023 02:36:39
%S 243,586,1272,2301,2644,2987,3673,4702,5045,5388,6074,7103,7446,7789,
%T 8475,9504,9847,10190,10876,11905,12248,12591,13277,14306,14649,14992,
%U 15678,16707,17050,17393,18079,19108,19451,19794,20480,21509,21852,22195,22881,23910
%N Counterexamples to a conjecture of Ramanujan about congruences related to the partition function.
%C For b in 5,7,11, and all integers n,e >= 1, Ramanujan conjectured that if (24*n-1) is divisible by b^e, the partition function p(n) = A000041(n) is also divisible by b^e.
%C Chowla found the first counterexample a(1) = 243. Watson showed the conjecture holds for b=5, and Atkin showed it holds for b=11. Watson showed p(n) is divisible by 7^floor((d+2)/2) when 24n-1 is divisible by 7^d, so that exceptions here are restricted to 24n-1 == 0 (mod 7^3), which is n == 243 (mod 7^3).
%C See A340957 for the converse, those n == 243 (mod 7^3) where the conjecture does hold.
%H A. O. L. Atkin and P. Swinnerton-Dyer, <a href="https://doi.org/10.1112/plms/s3-4.1.84">Some Properties of Partitions,</a>, Proceedings of the London Math. Soc., V. s3-4, Issue 1, pp. 84-106, (1954)
%H A. O. L. Atkin and S. M. Hussain, <a href="https://doi.org/10.1090/S0002-9947-1958-0103872-3">Some Properties of Partitions II</a>, Trans. Amer. Math. Soc. 89, pp. 184-200 (1958).
%H Hansraj Gupta, <a href="https://nvlpubs.nist.gov/nistpubs/jres/74B/jresv74Bn1p1_A1b.pdf">Partitions - A Survey</a>, Journal of Research of the National Bureau of Standards - B. Mathematical Sciences Vol. 74B, No. 1, January-March 1970. See section 6.1.
%H D. H. Lehmer, <a href="https://doi.org/10.1112/jlms/s1-11.2.114">On a conjecture of Ramanujan</a>, J. London Math. Soc. 11, 114-118 (1936).
%H D. H. Lehmer, <a href="https://doi.org/10.1112/jlms/s1-12.2.171">On the Hardy-Ramanujan Series for the partition function,</a>, J. London Math. Soc. 12, 171-176 (1937).
%H G. N. Watson, <a href="https://doi.org/10.1112/jlms/s1-4.1.4">A New Proof of the Rogers-Ramanujan Identities</a>, J. London Math. Soc., V. s1-4, 1, Pages 4-9. (1929).
%H G. N. Watson, <a href="http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002174499">Ramanujans Vermutung über Zerfällungsanzahlen</a>. J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PartitionFunctionPCongruences.html">Partition Function P Congruences</a>.
%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%e 243 is a term because for n = 243, the condition of Ramanujan (24*n - 1) divisible by b^e is true, and p(n) is not divisible by (b^e). [We have base b=7, and exponent e=3 in this case.] Since a(1) = A182719(91), 90 numbers satisfy the conjecture before the first counterexample a(1).
%o (PARI) seq(x) = {my( n = -100, N=0); while(N < x, n += 343; if(valuation(numbpart(n),7) < valuation(24*n-1,7), print1(n", "); N++)) };
%o seq(100); \\ Gives the first 100 terms of the sequence.
%Y Cf. A000041, A052462, A052465, A052466, A182719, A340957.
%K nonn,easy
%O 1,1
%A _Washington Bomfim_, Jan 19 2021