

A052462


a(n) is the solution k to Mod[24k,5^n]==1.


5



4, 24, 99, 599, 2474, 14974, 61849, 374349, 1546224, 9358724, 38655599, 233968099, 966389974, 5849202474, 24159749349, 146230061849, 603993733724, 3655751546224, 15099843343099, 91393788655599, 377496083577474
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Related to a Ramanujan congruence for the partition function P.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Partition Function P Congruences.
Index entries for linear recurrences with constant coefficients, signature (1,25,25).


FORMULA

G.f.: x(25x^2+20x+4)/[(1x)(15x)(1+5x)].
a(n) = (1+(21+2*(1)^n)*5^n)/24  Bruno Berselli, Apr 04 2011
a(n) = a(n1) +25*a(n2) 25*a(n3).  Vincenzo Librandi, Jul 01 2012


MATHEMATICA

Table[PowerMod[24, 1, 5^a], {a, 21}]
CoefficientList[Series[(25x^2+20x+4)/((1x)(15x)(1+5x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 01 2012 *)


PROG

(MAGMA) I:=[4, 24, 99]; [n le 3 select I[n] else Self(n1)+25*Self(n2)25*Self(n3): n in [1..30]]; // Vincenzo Librandi, Jul 01 2012


CROSSREFS

Cf. A052463, A052465, A052466.
Sequence in context: A100738 A139238 A139231 * A260217 A048806 A043009
Adjacent sequences: A052459 A052460 A052461 * A052463 A052464 A052465


KEYWORD

nonn,easy


AUTHOR

Eric W. Weisstein


STATUS

approved



