login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052459 a(n) = n*(2*n^2 + 1)*(n^2 + 1)/6. 4
1, 15, 95, 374, 1105, 2701, 5775, 11180, 20049, 33835, 54351, 83810, 124865, 180649, 254815, 351576, 475745, 632775, 828799, 1070670, 1366001, 1723205, 2151535, 2661124, 3263025, 3969251, 4792815, 5747770, 6849249, 8113505 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

2-magic series constant.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Magic constant.

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

G.f.: x*(1 + 3*x + x^2)*(1 + 6*x + x^2)/(1-x)^6. - Chai Wah Wu, Dec 17 2016

E.g.f.: x*(6 +39*x +53*x^2 +20*x^3 +2*x^4)*exp(x)/6. - G. C. Greubel, Sep 23 2019

MAPLE

seq(n*(2*n^2 +1)*(n^2 +1)/6, n=1..30); # G. C. Greubel, Sep 23 2019

MATHEMATICA

Table[n*(2*n^2 +1)*(n^2 +1)/6, {n, 30}] (* G. C. Greubel, Sep 23 2019 *)

PROG

(PARI) vector(30, n, n*(2*n^2 +1)*(n^2 +1)/6) \\ G. C. Greubel, Sep 23 2019

(MAGMA) [n*(2*n^2 +1)*(n^2 +1)/6: n in [1..30]]; // G. C. Greubel, Sep 23 2019

(Sage) [n*(2*n^2 +1)*(n^2 +1)/6 for n in (1..30)] # G. C. Greubel, Sep 23 2019

(GAP) List([1..30], n-> n*(2*n^2 +1)*(n^2 +1)/6); # G. C. Greubel, Sep 23 2019

CROSSREFS

Cf. A052460, A052461.

Sequence in context: A114240 A189657 A190274 * A044266 A044647 A289705

Adjacent sequences:  A052456 A052457 A052458 * A052460 A052461 A052462

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

EXTENSIONS

Formula from Vladeta Jovovic, Jun 15 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 00:32 EST 2020. Contains 331313 sequences. (Running on oeis4.)