login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336278
a(n) = Sum_{k=1..n} mu(k)*k^4.
7
1, -15, -96, -96, -721, 575, -1826, -1826, -1826, 8174, -6467, -6467, -35028, 3388, 54013, 54013, -29508, -29508, -159829, -159829, 34652, 268908, -10933, -10933, -10933, 446043, 446043, 446043, -261238, -1071238, -1994759, -1994759, -808838, 527498, 2028123
OFFSET
1,2
COMMENTS
Conjecture: a(n) changes sign infinitely often.
LINKS
FORMULA
Partial sums of A334660.
From Seiichi Manyama, Apr 03 2023: (Start)
G.f. A(x) satisfies x = Sum_{k>=1} k^4 * (1 - x^k) * A(x^k).
Sum_{k=1..n} k^4 * a(floor(n/k)) = 1. (End)
MATHEMATICA
Array[Sum[MoebiusMu[k]*k^4, {k, #}] &, 35] (* Michael De Vlieger, Jul 15 2020 *)
Accumulate[Table[MoebiusMu[x]x^4, {x, 40}]] (* Harvey P. Dale, Jan 14 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, moebius(k)*k^4); \\ Michel Marcus, Jul 15 2020
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A336278(n):
if n <= 1:
return 1
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c -= (j2*(j2**2*(j2*(6*j2 - 15) + 10) - 1)-j*(j**2*(j*(6*j - 15) + 10) - 1))//30*A336278(k1)
j, k1 = j2, n//j2
return c-(n*(n**2*(n*(6*n + 15) + 10) - 1)-j*(j**2*(j*(6*j - 15) + 10) - 1))//30 # Chai Wah Wu, Apr 04 2023
KEYWORD
easy,sign
AUTHOR
Donald S. McDonald, Jul 15 2020
STATUS
approved