

A052458


Number of trimagic series for squares of order n.


6



1, 0, 0, 2, 2, 0, 0, 121, 126, 0, 31187, 2226896, 17265701, 0, 69303997733
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Asymptotic results are presented in Quist for magic cube and hypercube series, bimagic series, and trimagic series. [Jonathan Vos Post, Jun 04 2013].


REFERENCES

M. Kraitchik, Mathematical Recreations, 1942, see Section 7.10.


LINKS

Table of n, a(n) for n=1..15.
Christian Boyer, Multimagic Squares
Michael Quist, Asymptotic enumeration of magic series, arXiv:1306.0616v1 [math.CO], June 03, 2013.
Eric Weisstein's World of Mathematics, Multimagic Series


CROSSREFS

Cf. A052456, A052457, A090653, A092312, A090037.
Sequence in context: A285485 A176127 A087637 * A004586 A116511 A248211
Adjacent sequences: A052455 A052456 A052457 * A052459 A052460 A052461


KEYWORD

nonn,more,nice


AUTHOR

Eric W. Weisstein


EXTENSIONS

Corrected and extended Nov 15 2003, using the values of a(3) through a(12) from Christian Boyer's web site.  N. J. A. Sloane.
One more term from Christian Boyer (cboyer(AT)clubinternet.fr), Nov 05 2004
One further term from Christian Boyer (cboyer(AT)clubinternet.fr), May 30 2005
a(15) computed by Michael Quist, and communicated by Christian Boyer (cboyer(AT)clubinternet.fr), Feb 06 2009


STATUS

approved



