login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260217
Number of base-3 n-digit pandigital numbers.
3
0, 0, 4, 24, 100, 360, 1204, 3864, 12100, 37320, 114004, 346104, 1046500, 3155880, 9500404, 28566744, 85831300, 257756040, 773792404, 2322425784, 6969374500, 20912317800, 62745342004, 188252803224, 564791964100, 1694443001160, 5083463221204, 15250658099064
OFFSET
1,3
COMMENTS
From Manfred Boergens, Aug 02 2023: (Start)
a(n+1) is the number of pairs (A,B) where A and B are nonempty subsets of {1,2,...,n} and one of these subsets is a proper subset of the other.
If "proper" is omitted, see A091344.
If empty subsets are included, see A027649 (all subsets) and A056182 (proper subsets). (End)
LINKS
Svenja Huntemann, Values, Temperatures, and Enumeration of Placement Games, Slides, Alberta-Montana Combinatorics and Algorithms Day, Banff, Canada, 23-25 June 2023. See p. 105/109.
FORMULA
a(n) = 2*A028243(n) = 2*3^(n-1) - 2^(n+1) + 2.
a(n) = 4*A000392(n).
G.f.: 4*x^3/((1-x)*(1-2*x)*(1-3*x)).
E.g.f.: 2/3*((exp(x)-1)^3).
EXAMPLE
a(3)=4 because, in base 3, there are four 3-digit pandigital numbers (11=102_3, 15=120_3, 19=201_3, and 21=210_3).
a(4)=24 because, in base 3, there are 24 4-digit pandigital numbers (1002_3, 1012_3, 1020_3, 1021_3, 1022_3, 1102_3, 1120_3, 1200_3, 1201_3, 1202_3, 1210_3, 1220_3, 2001_3, 2010_3, 2011_3, 2012_3, 2021_3, 2100_3, 2101_3, 2102_3, 2110_3, 2120_3, 2201_3, and 2210_3).
MATHEMATICA
Table[2 3^(n - 1) - 2^(n + 1) + 2, {n, 30}] (* Vincenzo Librandi, Jul 20 2015 *)
PROG
(Magma) [2*3^(n-1) - 2^(n+1) + 2: n in [1..30]]; // Vincenzo Librandi, Jul 20 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jon E. Schoenfield, Jul 19 2015
STATUS
approved