login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260215
Expansion of chi(-q) * chi(q^9) / (chi(q) * chi(-q^9)) in powers of q where chi() is a Ramanujan theta function.
5
1, -2, 2, -4, 6, -8, 12, -16, 22, -28, 36, -48, 60, -76, 96, -120, 150, -184, 228, -280, 340, -416, 504, -608, 732, -878, 1052, -1252, 1488, -1768, 2088, -2464, 2902, -3408, 3996, -4672, 5460, -6364, 7400, -8600, 9972, -11544, 13344, -15400, 17752, -20424
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(-q) * psi(q^9) / (psi(q) * psi(-q^9)) in powers of q where psi() is a Ramanujan theta function.
Expansion of eta(q)^2 * eta(q^4) * eta(q^18)^3 / (eta(q^2)^3 * eta(q^9)^2 * eta(q^36)) in powers of q.
Euler transform of period 36 sequence [ -2, 1, -2, 0, -2, 1, -2, 0, 0, 1, -2, 0, -2, 1, -2, 0, -2, 0, -2, 0, -2, 1, -2, 0, -2, 1, 0, 0, -2, 1, -2, 0, -2, 1, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. of A128143.
a(n) = (-1)^n * A261156(n). Convolution inverse of A261156
a(2*n + 1) = -2 * A261203(n) = -2 * A261154(2*n + 1). 2 * a(2*n) = A261154(2*n) unless n=0.
a(3*n) = A261320(n). a(3*n + 1) = -2 * A261325(n). a(3*n + 2) = 2 * A260057(n). - Michael Somos, Nov 08 2015
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 - 2*x + 2*x^2 - 4*x^3 + 6*x^4 - 8*x^5 + 12*x^6 - 16*x^7 + 22*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2] QPochhammer[ q, -q] QPochhammer[ -q^9, q^18] QPochhammer[ -q^9, q^9], {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^18 + A)^3 / (eta(x^2 + A)^3 * eta(x^9 + A)^2 * eta(x^36 + A)), n))};
KEYWORD
sign
AUTHOR
Michael Somos, Aug 13 2015
STATUS
approved