login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091344
a(n) = 2*3^n - 3*2^n + 1.
10
0, 1, 7, 31, 115, 391, 1267, 3991, 12355, 37831, 115027, 348151, 1050595, 3164071, 9516787, 28599511, 85896835, 257887111, 774054547, 2322950071, 6970423075, 20914414951, 62749536307, 188261191831, 564808741315, 1694476555591
OFFSET
0,3
COMMENTS
Starting with offset 1 = binomial transform of A068293: (1, 6, 18, 42, 90, ...) and double binomial transform of (1, 5, 7, 5, 7, 5, ...). - Gary W. Adamson, Jan 13 2009
Number of pairs (A,B) where A and B are nonempty subsets of {1,2,...,n} and one of these subsets is a subset of the other. - For the case that one of these subsets is a proper subset of the other see a(n+1) in A260217. - If empty subsets are included, see A027649 (all subsets) and A056182 (proper subsets). - Manfred Boergens, Aug 02 2023
LINKS
Christian Ballot and Florian Luca, Prime factors of a^f(n)-1 with an irreducible polynomial f(x),New York J. Math. 12 (2006), 39-45 (electronic).
Christian Ballot and Florian Luca, Common prime factors of a^n-b and c^n-d, Unif. Distrib. Theory 2 (2007), no. 2, 19-34 (electronic).
FORMULA
a(n) = Sum_{i=1..n} i!*i^2*Stirling2(n,i)*(-1)^(n-i).
From Christian Ballot via R. K. Guy, Jan 13 2009: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3);
G.f.: x*(1+x)/((1-x)*(2-x)*(3-x)). (End)
a(n) = 5*a(n-1) - 6*a(n-2) + 2, a(0)=0, a(1)=1. - Vincenzo Librandi, Nov 25 2010
E.g.f.: exp(x)*(1 - 3*exp(x) + 2*exp(2*x)). - Stefano Spezia, May 18 2024
MAPLE
a:=n->sum((3^(n-j-1)-2^(n-2-j))*12, j=0..n): seq(a(n), n=-1..24); # Zerinvary Lajos, Feb 11 2007
with (combinat):a:=n->stirling2(n, 3)+stirling2(n+1, 3): seq(a(n), n=1..26); # Zerinvary Lajos, Oct 07 2007
MATHEMATICA
Table[Sum[i!i^2 StirlingS2[n, i](-1)^(n - i), {i, 1, n}], {n, 0, 30}]
Table[2*3^n-3*2^n+1, {n, 0, 30}] (* or *) LinearRecurrence[{6, -11, 6}, {0, 1, 7}, 30] (* Harvey P. Dale, Dec 31 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jan 01 2004
EXTENSIONS
Edited by N. J. A. Sloane, Jan 13 2009 at the suggestion of R. K. Guy; the concise definition was provided by Vladeta Jovovic, Jan 01 2004
STATUS
approved