login
A091343
Decimal expansion of Gamma(1/4)/(2*Pi^(3/4)).
4
7, 6, 8, 2, 2, 5, 4, 2, 2, 3, 2, 6, 0, 5, 6, 6, 5, 9, 0, 0, 2, 5, 9, 4, 1, 7, 9, 5, 7, 6, 1, 8, 0, 6, 4, 4, 5, 1, 7, 8, 6, 6, 9, 1, 4, 4, 6, 4, 8, 0, 5, 0, 1, 4, 6, 7, 6, 7, 0, 2, 8, 2, 4, 1, 4, 3, 6, 3, 0, 9, 8, 6, 7, 1, 2, 0, 6, 9, 2, 0, 7, 7, 1, 9, 1, 7, 5, 1, 0, 3, 0, 4, 9, 0, 0, 6, 2, 5, 2, 1, 5, 2
OFFSET
0,1
COMMENTS
Also the value of DedekindEta(I).
Ramanujan found four explicit special values of Dedekind eta(z), for: z = I (this one), z = I/2 (A248190), z = 2*I (A248191), and z = 4*I (A248192). - Stanislav Sykora, Oct 03 2014
LINKS
Eric Weisstein's World of Mathematics, Dedekind Eta Function
EXAMPLE
0.76822542232605665900259417957618064451786691446480501467670282414363...
MATHEMATICA
RealDigits[Gamma[1/4]/(2*Pi^(3/4)), 10, 120][[1]] (* Vaclav Kotesovec, Oct 04 2014 *)
PROG
(PARI) eta(I, 1) \\ - Stanislav Sykora, Oct 03 2014
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Eric W. Weisstein, Jan 01 2004
STATUS
approved