login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091343
Decimal expansion of Gamma(1/4)/(2*Pi^(3/4)).
4
7, 6, 8, 2, 2, 5, 4, 2, 2, 3, 2, 6, 0, 5, 6, 6, 5, 9, 0, 0, 2, 5, 9, 4, 1, 7, 9, 5, 7, 6, 1, 8, 0, 6, 4, 4, 5, 1, 7, 8, 6, 6, 9, 1, 4, 4, 6, 4, 8, 0, 5, 0, 1, 4, 6, 7, 6, 7, 0, 2, 8, 2, 4, 1, 4, 3, 6, 3, 0, 9, 8, 6, 7, 1, 2, 0, 6, 9, 2, 0, 7, 7, 1, 9, 1, 7, 5, 1, 0, 3, 0, 4, 9, 0, 0, 6, 2, 5, 2, 1, 5, 2
OFFSET
0,1
COMMENTS
Also the value of DedekindEta(I).
Ramanujan found four explicit special values of Dedekind eta(z), for: z = I (this one), z = I/2 (A248190), z = 2*I (A248191), and z = 4*I (A248192). - Stanislav Sykora, Oct 03 2014
LINKS
Eric Weisstein's World of Mathematics, Dedekind Eta Function
EXAMPLE
0.76822542232605665900259417957618064451786691446480501467670282414363...
MATHEMATICA
RealDigits[Gamma[1/4]/(2*Pi^(3/4)), 10, 120][[1]] (* Vaclav Kotesovec, Oct 04 2014 *)
PROG
(PARI) eta(I, 1) \\ - Stanislav Sykora, Oct 03 2014
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Eric W. Weisstein, Jan 01 2004
STATUS
approved