login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196397
Decimal expansion of the positive number x satisfying e^x=3*cos(x).
5
7, 6, 8, 5, 7, 8, 5, 4, 0, 8, 9, 4, 3, 3, 0, 4, 9, 2, 9, 9, 6, 8, 6, 1, 5, 8, 2, 1, 4, 1, 4, 1, 9, 6, 6, 7, 4, 9, 8, 4, 9, 7, 3, 2, 4, 3, 5, 0, 4, 4, 5, 1, 7, 0, 3, 1, 6, 6, 8, 1, 3, 8, 3, 3, 4, 5, 7, 8, 0, 8, 6, 3, 9, 0, 0, 3, 0, 3, 2, 6, 1, 7, 8, 8, 4, 8, 3, 8, 5, 7, 7, 3, 6, 3, 3, 7, 1, 3, 4, 9
OFFSET
0,1
EXAMPLE
x=0.768578540894330492996861582141419667498497324350...
MATHEMATICA
Plot[{E^x, 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}]
t = x /.
FindRoot[E^x == 2 Cos[x], {x, .5, .6}, WorkingPrecision -> 100]; RealDigits[t] (* A196396 *)
t = x /.
FindRoot[E^x == 3 Cos[x], {x, .7, .8}, WorkingPrecision -> 100]; RealDigits[t] (* A196397 *)
t = x /.
FindRoot[E^x == 4 Cos[x], {x, .8, 1.0}, WorkingPrecision -> 100]; RealDigits[t] (* A196398 *)
t = x /.
FindRoot[E^x == 5 Cos[x], {x, .8, 1.0}, WorkingPrecision -> 100]; RealDigits[t] (* A196399 *)
t = x /.
FindRoot[E^x == 6 Cos[x], {x, 1.0, 1.1}, WorkingPrecision -> 100]; RealDigits[t] (* A196400 *)
CROSSREFS
Sequence in context: A277077 A196913 A091343 * A238301 A154170 A308041
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved