login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196913
Decimal expansion of the number x satisfying 0 < x < 2*Pi and 2x = (1 + x^2)*tan(x).
3
7, 6, 8, 2, 1, 7, 1, 5, 5, 3, 1, 5, 3, 7, 8, 2, 5, 0, 4, 3, 1, 2, 1, 2, 2, 8, 6, 6, 9, 7, 9, 2, 5, 4, 0, 9, 5, 4, 6, 6, 9, 1, 5, 6, 5, 8, 5, 7, 1, 6, 3, 2, 1, 6, 7, 1, 9, 4, 9, 1, 6, 8, 4, 5, 8, 8, 1, 3, 4, 3, 5, 2, 8, 9, 3, 3, 1, 2, 0, 8, 9, 2, 5, 6, 2, 2, 8, 9, 9, 7, 6, 8, 7, 3, 7, 7, 1, 4, 2, 8
OFFSET
0,1
EXAMPLE
x=0.7682171553153782504312122866979254095466915658...
MATHEMATICA
Plot[{1/(1 + x^2), 0.874*Cos[x]}, {x, .5, 1}]
t = x /. FindRoot[Tan[x] == 2 x/(1 + x^2), {x, .5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196913 *)
c = N[Sqrt[t^4 + 6 t^2 + 1]/(t^4 + 2 t^2 + 1), 100]
RealDigits[c] (* A196914 *)
slope = N[-c*Sin[t], 100]
RealDigits[slope](* A196915 *)
CROSSREFS
Sequence in context: A010512 A195370 A277077 * A091343 A196397 A238301
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 07 2011
STATUS
approved