login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196914
Decimal expansion of the number c for which the curve y=1/(1+x^2) is tangent to the curve y=c*cos(x), and 0 < x < 2*Pi.
10
8, 7, 4, 4, 6, 0, 0, 3, 6, 6, 2, 4, 0, 0, 9, 2, 6, 5, 5, 4, 8, 1, 4, 6, 4, 4, 8, 4, 0, 6, 7, 3, 7, 2, 5, 6, 6, 3, 0, 7, 3, 9, 7, 2, 6, 9, 8, 4, 4, 6, 9, 0, 8, 1, 4, 0, 1, 1, 2, 0, 4, 5, 2, 1, 2, 5, 9, 6, 0, 1, 1, 1, 5, 6, 1, 3, 3, 3, 0, 4, 9, 8, 5, 5, 8, 1, 3, 8, 7, 2, 6, 2, 2, 4, 2, 0, 7, 7, 5
OFFSET
0,1
FORMULA
x=0.87446003662400926554814644840673725663073...
EXAMPLE
c=0.87446003662400926554814644840673725663073...
MATHEMATICA
Plot[{1/(1 + x^2), 0.874*Cos[x]}, {x, .5, 1}]
t = x /. FindRoot[Tan[x] == 2 x/(1 + x^2), {x, .5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196913 *)
c = N[Sqrt[t^4 + 6 t^2 + 1]/(t^4 + 2 t^2 + 1), 100]
RealDigits[c] (* A196914 *)
slope = N[-c*Sin[t], 100]
RealDigits[slope](* A196915 *)
CROSSREFS
Sequence in context: A268046 A260060 A260800 * A072102 A274442 A249136
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 07 2011
STATUS
approved