OFFSET
0,1
COMMENTS
Also the decimal expansion of the 2-periodic continued fraction Pi/(e+Pi/(e+Pi/(...))).
Also the positive solution of the equation x*(x+e)=Pi, and the unique attractor of the real mapping M(x)=Pi/(e+x), with e being the Euler number. The negative solution of the equation is an invariant point, but not an attractor, of M(x) and does not lead to a convergent c.f.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 0..2000
EXAMPLE
0.87443395094120986641796610477823160007054752616633263886434842992...
The negative solution of the equation is -(a+e) =
-3.5927157794002551017782535761308940978277946198662922138313160576...
MAPLE
evalf((sqrt(exp(2)+4*Pi)-exp(1))/2); # R. J. Mathar, Aug 20 2015
MATHEMATICA
RealDigits[(Sqrt[E^2+4Pi]-E)/2, 10, 120][[1]] (* Harvey P. Dale, Nov 09 2019 *)
PROG
(PARI) e=exp(1); a=(sqrt(e*e+4*Pi)-e)/2
CROSSREFS
KEYWORD
AUTHOR
Stanislav Sykora, Jul 31 2015
STATUS
approved