|
|
A260801
|
|
Primes p such that A008908(p) is also prime.
|
|
0
|
|
|
2, 7, 17, 29, 31, 71, 89, 107, 113, 127, 131, 157, 181, 223, 239, 263, 271, 277, 281, 283, 313, 337, 379, 409, 419, 421, 431, 503, 547, 571, 577, 691, 701, 727, 757, 809, 821, 857, 883, 947, 953, 971, 1031, 1109, 1129, 1153, 1163, 1231, 1283, 1291, 1327, 1361, 1447, 1487, 1531, 1559, 1567, 1583
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
7 is prime and A008908(7) is 17, which is also prime. Therefore, 7 is in the sequence.
|
|
MATHEMATICA
|
collatz[n_]:=If[EvenQ[n], n/2, 3*n+1];
seq[n_]:=Length[NestWhileList[collatz, n, #!= 1&]]
Select[Flatten[Position[seq/@Range[7!], _?PrimeQ]], PrimeQ]
|
|
PROG
|
(PARI) T(n)=c=0; while(n!=1, if(n%2, n=3*n+1; c++); if(!(n%2), n=n/2; c++)); c+1
forprime(p=1, 10^3, if(isprime(T(p)), print1(p, ", "))) \\ Derek Orr, Aug 27 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|