login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260804
Number of ways to write n as n = x * y * z * t + x + y + z + t where 1 <= x <= y <= z <= t <= n.
6
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 3, 0, 3, 2, 2, 1, 5, 0, 1, 2, 4, 1, 4, 0, 3, 3, 2, 1, 4, 2, 3, 2, 2, 0, 5, 1, 4, 1, 2, 3, 6, 1, 2, 2, 5, 1, 4, 0, 4, 3, 3, 1, 6, 1, 2, 4, 4, 2, 4, 1, 4, 2, 2, 1, 8, 2, 4, 2, 4, 2, 5, 1, 4, 2, 2, 3, 8, 1, 3, 4, 4, 0, 4, 1, 6, 4, 3, 0
OFFSET
0,14
COMMENTS
a(n) = A071689(n) - A001399(n) = A071689(n) - round((n+3)^2/12).
From Vladimir Shevelev, Aug 03 2015: (Start)
Is the set of n for which a(n)=0 finite?
Note that this set contains only numbers n of the form prime + 1. Indeed, if n-1>=4 is a composite number, then n = p*q + 1, p>=2, q>=2. If p <= q, then, for x=1, y=1, z = p-1, t = q-1, we have
x*y*z*t + x + y + z + t = 1*1*(p-1)*(q-1) + 1 + 1 + (p-1) + (q-1) = p*q + 1 = n; so a(n) >= 1. If p > q, then we set x=1, y=1, z = q-1, t = p-1, and again a(n) >= 1.
Note also that limsup_{n->infinity} (a(n)) = infinity. Indeed, this limit is realized, say, on n = primorials +1 (A002110), since, when m goes to infinity, the number of representations of n - 1 = A002110(m) of the form p*q tends to infinity. On primorials +1 > 2 we have a subsequence: 0,1,3,8,27,... .
A generalization. For k>=2, let b_k(n) be the number of ways to write n as n = x_1 * x_2 *...* x_k + x_1 + x_2 + ... + x_k, where 1 <= x_1 <= x_2 <= ... <= x_k <= n.
Then, for n >= k-1, b_k(n) = 0 yields that n - k + 3 is prime with similar other comments. In particular, only b_2(n) = 0 if and only if n+1 is 1 or prime (cf. A072670). (End)
LINKS
Vladimir Shevelev, Representation of positive integers by the form x1...xk+x1+...+xk, arXiv:1508.03970 [math.NT], 2015.
FORMULA
If A260803(n) > 0, then a(n+1) > 0. So if a(n+1) = 0, then A260803(n) = 0. Converse statement is not true. For example, a(24) > 0, while A260803(23) = 0. - Vladimir Shevelev, Aug 14 2015
MATHEMATICA
xmax = 9; ymax = 21; zmax = 98; (* When extending data, terms where maxima for x, y or z are reached have to be checked one by one. *)
r[n_] := r[n] = Module[{r1, r2, r3, rn}, r1 = Reap[Do[rn = Reduce[n == x y z t + x + y + z + t && 1 <= x <= y <= z <= t <= n, t, Integers]; If[rn =!= False, Sow[{x, y, z, t} /. {ToRules[rn]}]], {x, 1, xmax}, {y, 1, ymax}, {z, 1, zmax}]]; If[r1 == {Null, {}} , {}, r2 = r1[[2, 1]]; r3 = Flatten[r2, 1]; If[Max[r3[[All, 1]]] == xmax, Print[ "xmax reached at n = ", n]]; If[Max[r3[[All, 2]]] == ymax, Print["ymax reached at n = ", n]]; If[Max[r3[[All, 3]]] == zmax, Print["zmax reached at n = ", n]]; r3]];
a[n_] := Length[r[n]];
Table[Print["a(", n, ") = ", a[n], " ", r[n]]; a[n], {n, 0, 109}] (* Jean-François Alcover, Nov 19 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
David A. Corneth, Jul 31 2015
STATUS
approved