login
A341345
a(n) = A048673(n) mod 3.
5
1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 0, 2, 1
OFFSET
1,2
FORMULA
a(n) = A010872(A048673(n)).
a(n) = 0 iff A292247(n) is odd.
a(n) = 0 iff A292250(n) is odd, or equally, iff both A291759(n) and A304759(n) are even.
a(n) = 0 iff A292251(n) > 0.
a(n) = 1 iff A292248(n) is odd.
a(n) = 1 iff A304759(n) is odd, or equally, iff both A291759(n) and A292250(n) are even.
a(2n) = 2.
PROG
(PARI)
A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
A341345(n) = (((A003961(n)+1)/2)%3);
CROSSREFS
Cf. A007395 (even bisection), A341346 (odd bisection), A341347.
Cf. also A292603.
Sequence in context: A260803 A260804 A353698 * A068067 A046926 A200815
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 09 2021
STATUS
approved