login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292243
a(1) = 1; for n > 1, a(n) = 3*a(A253889(n)) + (n mod 3).
7
1, 5, 3, 16, 17, 9, 49, 11, 33, 160, 50, 156, 52, 53, 147, 88, 29, 27, 82, 149, 474, 457, 35, 453, 106, 101, 441, 151, 482, 303, 265, 152, 483, 250, 470, 1449, 1441, 158, 480, 1429, 161, 1407, 469, 443, 1371, 298, 266, 318, 1348, 89, 969, 961, 83, 954, 910, 248, 897, 268, 449, 1455, 322, 1424, 99, 808, 1373, 738, 1366, 107
OFFSET
1,2
COMMENTS
a(n) encodes in its base-3 representation the succession of modulo 3 residues obtained when map x -> A253889(x), starting from x=n, is iterated down to the eventual 1.
FORMULA
a(1) = 1; for n > 1, a(n) = 3*a(A253889(n)) + A010872(n).
MATHEMATICA
f[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; g[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; a[1] = 1; a[n_] := a[n] = 3 a[Floor@ g[Floor[f[n]/2]]] + Mod[n, 3]; Array[a, 68] (* Michael De Vlieger, Sep 16 2017 *)
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
A048673(n) = (A003961(n)+1)/2;
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A064216(n) = A064989((2*n)-1);
A253889(n) = if(1==n, n, A048673(A064216(n)\2));
A292243(n) = if(1==n, n, ((n%3) + 3*A292243(A253889(n))));
(Scheme, with memoization-macro definec)
(definec (A292243 n) (if (= 1 n) n (+ (modulo n 3) (* 3 (A292243 (A253889 n))))))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 15 2017
STATUS
approved