login
A292242
Number of trailing 2-digits in ternary representation of A254103(n).
5
0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1
OFFSET
0,7
LINKS
FORMULA
a(n) = A007949(1+A254103(n)).
a(n) = A007814(1+A291760(n)).
a(0) = 0, after which, a(2n) = 1 + A292241(n/2), a(2n+1) = 0.
PROG
(Scheme)
(define (A292242 n) (A007949 (+ 1 (A254103 n))))
(define (A292242 n) (A007814 (+ 1 (A291760 n))))
(define (A292242 n) (cond ((zero? n) n) ((odd? n) 0) (else (+ 1 (A292241 (/ n 2))))))
CROSSREFS
Cf. A007814, A007949, A254103, A291760, A292241 (even bisection subtracted by one).
Cf. also A292252, A292262.
Sequence in context: A104975 A191254 A106404 * A280800 A083889 A360079
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 12 2017
STATUS
approved