OFFSET
0,22
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
Riordan array (x^2/( (Sum_{k>=0} x^(2^k)) - x), x).
Sum_{k=0..n} T(n, k) = A104976(n).
T(n, k) = A104977((n-k)/2) if (n-k) is even, otherwise 0. - G. C. Greubel, Jun 08 2021
EXAMPLE
Triangle begins as:
1;
0, 1;
-1, 0, 1;
0, -1, 0, 1;
1, 0, -1, 0, 1;
0, 1, 0, -1, 0, 1;
-2, 0, 1, 0, -1, 0, 1;
0, -2, 0, 1, 0, -1, 0, 1;
3, 0, -2, 0, 1, 0, -1, 0, 1;
0, 3, 0, -2, 0, 1, 0, -1, 0, 1;
-4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;
0, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;
6, 0, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;
MATHEMATICA
t[n_, k_]:= t[n, k]= If[k==n, 1, (1+(-1)^(n-k))/2 Sum[Binomial[k, j]*t[(n-k)/2, j], {j, (n-k)/2}]];
S[n_]:= Sum[(-1)^j*t[n, j], {j, 0, n}]; (* S = A104977 *)
T[n_, k_]:= If[EvenQ[n-k], S[(n-k)/2], 0];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 08 2021 *)
PROG
(Sage)
@CachedFunction
def t(n, k): return 1 if (k==n) else ((1+(-1)^(n-k))/2)*sum( binomial(k, j)*t((n-k)/2, j) for j in (1..(n-k)//2) )
def S(n): return sum( (-1)^j*t(n, j) for j in (0..n) ) # S = A104977
def T(n, k): return S((n-k)/2) if (mod(n-k, 2)==0) else 0
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 08 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Mar 30 2005
STATUS
approved