login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104975
Inverse of a Fredholm-Rueppel triangle.
4
1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, -2, 0, 1, 0, -1, 0, 1, 0, -2, 0, 1, 0, -1, 0, 1, 3, 0, -2, 0, 1, 0, -1, 0, 1, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1, 0, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1, 6, 0, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1, 0, 6, 0, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1, -10, 0, 6, 0, -4, 0, 3, 0, -2
OFFSET
0,22
COMMENTS
Sequence array for A104977.
Inverse of A104974.
FORMULA
Riordan array (x^2/( (Sum_{k>=0} x^(2^k)) - x), x).
Sum_{k=0..n} T(n, k) = A104976(n).
T(n, k) = A104977((n-k)/2) if (n-k) is even, otherwise 0. - G. C. Greubel, Jun 08 2021
EXAMPLE
Triangle begins as:
1;
0, 1;
-1, 0, 1;
0, -1, 0, 1;
1, 0, -1, 0, 1;
0, 1, 0, -1, 0, 1;
-2, 0, 1, 0, -1, 0, 1;
0, -2, 0, 1, 0, -1, 0, 1;
3, 0, -2, 0, 1, 0, -1, 0, 1;
0, 3, 0, -2, 0, 1, 0, -1, 0, 1;
-4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;
0, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;
6, 0, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;
MATHEMATICA
t[n_, k_]:= t[n, k]= If[k==n, 1, (1+(-1)^(n-k))/2 Sum[Binomial[k, j]*t[(n-k)/2, j], {j, (n-k)/2}]];
S[n_]:= Sum[(-1)^j*t[n, j], {j, 0, n}]; (* S = A104977 *)
T[n_, k_]:= If[EvenQ[n-k], S[(n-k)/2], 0];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 08 2021 *)
PROG
(Sage)
@CachedFunction
def t(n, k): return 1 if (k==n) else ((1+(-1)^(n-k))/2)*sum( binomial(k, j)*t((n-k)/2, j) for j in (1..(n-k)//2) )
def S(n): return sum( (-1)^j*t(n, j) for j in (0..n) ) # S = A104977
def T(n, k): return S((n-k)/2) if (mod(n-k, 2)==0) else 0
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 08 2021
CROSSREFS
Cf. A104974, A104976 (row sums), A104977.
Sequence in context: A152140 A292252 A244415 * A191254 A106404 A292242
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Mar 30 2005
STATUS
approved