login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse of a Fredholm-Rueppel triangle.
4

%I #8 Jun 09 2021 02:28:02

%S 1,0,1,-1,0,1,0,-1,0,1,1,0,-1,0,1,0,1,0,-1,0,1,-2,0,1,0,-1,0,1,0,-2,0,

%T 1,0,-1,0,1,3,0,-2,0,1,0,-1,0,1,0,3,0,-2,0,1,0,-1,0,1,-4,0,3,0,-2,0,1,

%U 0,-1,0,1,0,-4,0,3,0,-2,0,1,0,-1,0,1,6,0,-4,0,3,0,-2,0,1,0,-1,0,1,0,6,0,-4,0,3,0,-2,0,1,0,-1,0,1,-10,0,6,0,-4,0,3,0,-2

%N Inverse of a Fredholm-Rueppel triangle.

%C Sequence array for A104977.

%C Inverse of A104974.

%H G. C. Greubel, <a href="/A104975/b104975.txt">Rows n = 0..50 of the triangle, flattened</a>

%F Riordan array (x^2/( (Sum_{k>=0} x^(2^k)) - x), x).

%F Sum_{k=0..n} T(n, k) = A104976(n).

%F T(n, k) = A104977((n-k)/2) if (n-k) is even, otherwise 0. - _G. C. Greubel_, Jun 08 2021

%e Triangle begins as:

%e 1;

%e 0, 1;

%e -1, 0, 1;

%e 0, -1, 0, 1;

%e 1, 0, -1, 0, 1;

%e 0, 1, 0, -1, 0, 1;

%e -2, 0, 1, 0, -1, 0, 1;

%e 0, -2, 0, 1, 0, -1, 0, 1;

%e 3, 0, -2, 0, 1, 0, -1, 0, 1;

%e 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;

%e -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;

%e 0, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;

%e 6, 0, -4, 0, 3, 0, -2, 0, 1, 0, -1, 0, 1;

%t t[n_, k_]:= t[n, k]= If[k==n, 1, (1+(-1)^(n-k))/2 Sum[Binomial[k, j]*t[(n-k)/2, j],{j, (n-k)/2}]];

%t S[n_]:= Sum[(-1)^j*t[n, j], {j,0,n}]; (* S = A104977 *)

%t T[n_, k_]:= If[EvenQ[n-k], S[(n-k)/2], 0];

%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 08 2021 *)

%o (Sage)

%o @CachedFunction

%o def t(n,k): return 1 if (k==n) else ((1+(-1)^(n-k))/2)*sum( binomial(k, j)*t((n-k)/2, j) for j in (1..(n-k)//2) )

%o def S(n): return sum( (-1)^j*t(n, j) for j in (0..n) ) # S = A104977

%o def T(n,k): return S((n-k)/2) if (mod(n-k, 2)==0) else 0

%o flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 08 2021

%Y Cf. A104974, A104976 (row sums), A104977.

%K easy,sign,tabl

%O 0,22

%A _Paul Barry_, Mar 30 2005