OFFSET
0,1
COMMENTS
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = A000108(n+1-k) mod 2. [Corrected by R. J. Mathar, Apr 21 2021]
Sum_{k=0..n} T(n, k) = A000523(n+1).
EXAMPLE
Triangle begins as:
1;
0, 1;
1, 0, 1;
0, 1, 0, 1;
0, 0, 1, 0, 1;
0, 0, 0, 1, 0, 1;
1, 0, 0, 0, 1, 0, 1;
0, 1, 0, 0, 0, 1, 0, 1;
0, 0, 1, 0, 0, 0, 1, 0, 1;
0, 0, 0, 1, 0, 0, 0, 1, 0, 1;
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1;
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1;
MAPLE
A104974 := proc(n, k)
modp(A000108(n+1-k), 2);
end proc:
seq(seq( A104974(n, k), k=0..n), n=0..15); # R. J. Mathar, Apr 21 2021
MATHEMATICA
Table[Mod[CatalanNumber[n-k+1], 2], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 08 2021 *)
PROG
(Magma) [(Catalan(n-k+1) mod 2): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 08 2021
(Sage) flatten([[mod(catalan_number(n-k+1), 2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 08 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Mar 30 2005
STATUS
approved