OFFSET
1,2
COMMENTS
a(n) = mu(n) - mu(n-1), where mu(n) = A360078(n) is the Moebius function of the floor quotient poset.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..10000
J.-P. Cardinal, Symmetric matrices related to the Mertens function, arXiv:0811.3701 [math.NT], 2008.
J. C. Lagarias and D. H. Richman, The floor quotient partial order, arXiv:2212.11689 [math.NT], 2022.
MATHEMATICA
LinearSolve[Table[If[Floor[i/j] > Floor[i/(j + 1)], 1, 0], {i, n}, {j, n}] . Table[If[i >= j, 1, 0], {i, n}, {j, n}], UnitVector[n, 1]]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, my(S=Set(vector(n-1, k, n\(k+1)))); v[n]=-sum(i=1, #S, v[S[i]])); vector(#v, i, v[i]-if(i>1, v[i-1]))} \\ Andrew Howroyd, Jan 24 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Harry Richman, Jan 24 2023
STATUS
approved