login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360079
Finite differences of Moebius function for the floor quotient poset.
2
1, -2, 0, 1, 0, 1, 0, -1, 1, 0, 0, -1, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2
OFFSET
1,2
COMMENTS
a(n) = mu(n) - mu(n-1), where mu(n) = A360078(n) is the Moebius function of the floor quotient poset.
LINKS
J.-P. Cardinal, Symmetric matrices related to the Mertens function, arXiv:0811.3701 [math.NT], 2008.
J. C. Lagarias and D. H. Richman, The floor quotient partial order, arXiv:2212.11689 [math.NT], 2022.
MATHEMATICA
LinearSolve[Table[If[Floor[i/j] > Floor[i/(j + 1)], 1, 0], {i, n}, {j, n}] . Table[If[i >= j, 1, 0], {i, n}, {j, n}], UnitVector[n, 1]]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, my(S=Set(vector(n-1, k, n\(k+1)))); v[n]=-sum(i=1, #S, v[S[i]])); vector(#v, i, v[i]-if(i>1, v[i-1]))} \\ Andrew Howroyd, Jan 24 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Harry Richman, Jan 24 2023
STATUS
approved