OFFSET
1,60
COMMENTS
FORMULA
G.f.=tx-x+sum(x^(k^2)/(1-tx^2)/product(1-x^(2j), j=2..k), k=1..infinity).
EXAMPLE
T(22,3)=2 because we have [8,5,2,2,2,1,1,1] and [7,4,4,4,1,1,1].
Triangle starts:
0,1;
0;
0,1;
1;
0,0,1;
0,1;
0,0,0,1;
1,0,1;
MAPLE
g:=t*x-x+sum(x^(k^2)/(1-t*x^2)/product(1-x^(2*j), j=2..k), k=1..30): gser:=simplify(series(g, x=0, 35)): for n from 1 to 30 do P[n]:=sort(coeff(gser, x^n)) od: d:=proc(n) if n=1 then 1 elif n=2 then 0 elif n mod 2 = 1 then (n-1)/2 else (n-4)/2 fi end: for n from 1 to 30 do seq(coeff(P[n], t, j), j=0..d(n)) od; # yields sequence in triangular form; d(n) is the degree of the polynomial P[n]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 26 2006
STATUS
approved