login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137276
Triangle T(n,k), read by rows: T(n,k)= 0 if n-k odd. T(n,k)= 2*(-1)^((n-k)/2)*(2k-n)/(n+k)*binomial((n+k)/2,(n-k)/2) if n-k even.
14
1, 0, 1, 2, 0, 1, 0, 1, 0, 1, -2, 0, 0, 0, 1, 0, -3, 0, -1, 0, 1, 2, 0, -3, 0, -2, 0, 1, 0, 5, 0, -2, 0, -3, 0, 1, -2, 0, 8, 0, 0, 0, -4, 0, 1, 0, -7, 0, 10, 0, 3, 0, -5, 0, 1, 2, 0, -15, 0, 10, 0, 7, 0, -6, 0, 1, 0, 9, 0, -25, 0, 7, 0, 12, 0, -7, 0, 1, -2, 0, 24, 0, -35, 0, 0, 0, 18, 0, -8, 0, 1, 0, -11, 0, 49, 0, -42, 0, -12, 0
OFFSET
0,4
COMMENTS
Polynomial coefficients of P(n,x) in increasing powers, read by rows, where P(0,x)=1, P(1,x)=x, P(2,x)=2+x^2, P(3,x)=x+x^3, P(4,x)=-2+x^4, and P(n,x) = x*P(n-1,x) - P(n-2,x) for n>=5.
The row-reversed version of A135929.
Row sums are repeating 1, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1..., see A138034 and A119910.
LINKS
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, MR 1439165
FORMULA
T(n,k)= 0 if n-k odd. T(n,k)= 2*(-1)^((n-k)/2)*(2k-n)/(n+k)*binomial((n+k)/2,(n-k)/2) if n-k even.
P(n,x) = x*P(n-1,x)-P(n-2,x), n>=5.
P(n,2*x) = -2*T(n,x)+4*x*U(n-1,x), where T(n,x) is A053120 and U(n,x) is A053117.
EXAMPLE
{1}, = 1
{0, 1}, = x
{2, 0, 1}, = 2+x^2
{0, 1, 0, 1}, = x+x^3
{-2, 0, 0, 0, 1}, = -2+x^4
{0, -3, 0, -1, 0, 1}, = -3x-x^3+x^5
{2, 0, -3, 0, -2, 0, 1},
{0, 5, 0, -2, 0, -3, 0, 1},
{-2, 0, 8, 0, 0, 0, -4, 0, 1},
{0, -7, 0, 10, 0, 3, 0, -5, 0, 1},
{2, 0, -15, 0, 10, 0, 7, 0, -6, 0, 1},
{0, 9, 0, -25, 0, 7, 0, 12, 0, -7, 0, 1}
MAPLE
A137276 := proc(n, k) local nmk, npk; if n = 0 then 1; elif (n-k) mod 2 <> 0 then 0; else nmk := (n-k)/2 ; npk := (n+k)/2 ; (-1)^nmk*(2*k-n)/npk*binomial(npk, nmk) ; fi; end:
seq( seq(A137276(n, k), k=0..n), n=0..13) ;
CROSSREFS
Sequence in context: A127523 A364389 A116927 * A287234 A309938 A140581
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Fourth row inserted by the Associate Editors of the OEIS, Aug 27 2009
STATUS
approved