login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137277 Triangle of the coefficients [x^k] P_n(x) of the polynomials P_n(x) = 1/n * sum(j=0..floor(n/2), (-1)^j * binomial(n,j) * (n-4*j) * x^(n-2*j) ). 2
1, 0, 1, 2, 0, 1, 0, 1, 0, 1, -6, 0, 0, 0, 1, 0, -6, 0, -1, 0, 1, 20, 0, -5, 0, -2, 0, 1, 0, 25, 0, -3, 0, -3, 0, 1, -70, 0, 28, 0, 0, 0, -4, 0, 1, 0, -98, 0, 28, 0, 4, 0, -5, 0, 1, 252, 0, -126, 0, 24, 0, 9, 0, -6, 0, 1, 0, 378, 0, -150, 0, 15, 0, 15, 0, -7, 0, 1, -924, 0, 528, 0, -165, 0, 0, 0, 22, 0, -8, 0, 1, 0, -1452 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The first four P_n(x) are the same as in A137276.

Row sums are 1, 1, 3, 2, -5, -6, 14, 20, -45, -70, 154, a signed variant of A047074.

LINKS

Table of n, a(n) for n=0..92.

FORMULA

P(0,n)=1. P_n(x) = 1/n*sum(j=0..floor(n/2), (-1)^j*binomial(n,j)*(n-4*j)*x^(n-2*j)).

EXAMPLE

{1}, = 1

{0, 1}, = x

{2, 0, 1}, = 2+x^2

{0, 1, 0, 1}, = x+x^3

{-6, 0, 0, 0, 1}, = -6+x^4

{0, -6, 0, -1, 0, 1},

{20, 0, -5, 0, -2, 0, 1},

{0, 25, 0, -3,0, -3, 0, 1},

{-70, 0, 28, 0, 0, 0, -4, 0, 1},

{0, -98, 0, 28, 0,4, 0, -5, 0, 1},

{252, 0, -126, 0, 24, 0, 9, 0, -6, 0, 1}

MAPLE

A137277 := proc(n, k) if n = 0 then 1; else add( (-1)^j*binomial(n, j)*(n-4*j)*x^(n-2*j), j=0..n/2)/n ; coeftayl(%, x=0, k) ; fi; end:

seq( seq(A137277(n, k), k=0..n), n=0..15) ;

MATHEMATICA

B[x_, n_] = If[n > 0, Sum[(-1)^p*Binomial[n, p]*(n - 4*p)*x^(n - 2*p)/ n, {p, 0, Floor[n/2]}], 1]; a = Table[CoefficientList[B[x, n], x], {n, 0, 10}]; Flatten[a]

CROSSREFS

Cf. A138034.

Sequence in context: A137276 A287234 A140581 * A039975 A016253 A286998

Adjacent sequences:  A137274 A137275 A137276 * A137278 A137279 A137280

KEYWORD

sign,easy,tabl

AUTHOR

Roger L. Bagula, Mar 13 2008

EXTENSIONS

Edited by the Associate Editors of the OEIS, Aug 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 14 09:05 EDT 2018. Contains 313750 sequences. (Running on oeis4.)