The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137277 Triangle of the coefficients [x^k] P_n(x) of the polynomials P_n(x) = 1/n * sum(j=0..floor(n/2), (-1)^j * binomial(n,j) * (n-4*j) * x^(n-2*j) ). 2
1, 0, 1, 2, 0, 1, 0, 1, 0, 1, -6, 0, 0, 0, 1, 0, -6, 0, -1, 0, 1, 20, 0, -5, 0, -2, 0, 1, 0, 25, 0, -3, 0, -3, 0, 1, -70, 0, 28, 0, 0, 0, -4, 0, 1, 0, -98, 0, 28, 0, 4, 0, -5, 0, 1, 252, 0, -126, 0, 24, 0, 9, 0, -6, 0, 1, 0, 378, 0, -150, 0, 15, 0, 15, 0, -7, 0, 1, -924, 0, 528, 0, -165, 0, 0, 0, 22, 0, -8, 0, 1, 0, -1452 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The first four P_n(x) are the same as in A137276.
Row sums are 1, 1, 3, 2, -5, -6, 14, 20, -45, -70, 154, a signed variant of A047074.
LINKS
FORMULA
P(0,n)=1. P_n(x) = 1/n*sum(j=0..floor(n/2), (-1)^j*binomial(n,j)*(n-4*j)*x^(n-2*j)).
EXAMPLE
{1}, = 1
{0, 1}, = x
{2, 0, 1}, = 2+x^2
{0, 1, 0, 1}, = x+x^3
{-6, 0, 0, 0, 1}, = -6+x^4
{0, -6, 0, -1, 0, 1},
{20, 0, -5, 0, -2, 0, 1},
{0, 25, 0, -3,0, -3, 0, 1},
{-70, 0, 28, 0, 0, 0, -4, 0, 1},
{0, -98, 0, 28, 0,4, 0, -5, 0, 1},
{252, 0, -126, 0, 24, 0, 9, 0, -6, 0, 1}
MAPLE
A137277 := proc(n, k) if n = 0 then 1; else add( (-1)^j*binomial(n, j)*(n-4*j)*x^(n-2*j), j=0..n/2)/n ; coeftayl(%, x=0, k) ; fi; end:
seq( seq(A137277(n, k), k=0..n), n=0..15) ;
MATHEMATICA
B[x_, n_] = If[n > 0, Sum[(-1)^p*Binomial[n, p]*(n - 4*p)*x^(n - 2*p)/ n, {p, 0, Floor[n/2]}], 1]; a = Table[CoefficientList[B[x, n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
Cf. A138034.
Sequence in context: A287234 A309938 A140581 * A039975 A358679 A016253
KEYWORD
sign,easy,tabl
AUTHOR
Roger L. Bagula, Mar 13 2008
EXTENSIONS
Edited by the Associate Editors of the OEIS, Aug 27 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 06:35 EDT 2024. Contains 372666 sequences. (Running on oeis4.)