login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047074 a(n) = Sum_{i=0..floor(n/2)} T(i,n-i), array T as in A047072. 4
1, 1, 3, 2, 5, 6, 14, 20, 45, 70, 154, 252, 546, 924, 1980, 3432, 7293, 12870, 27170, 48620, 102102, 184756, 386308, 705432, 1469650, 2704156, 5616324, 10400600, 21544100, 40116600, 82907640, 155117520, 319929885, 601080390, 1237518450 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
MATHEMATICA
A[n_, k_]:= A[n, k]= If[k==n, 2*CatalanNumber[n-1] +2*Boole[n==0], If[k>n, Binomial[n+k-1, n] -Binomial[n+k-1, n-1], Binomial[n+k-1, k] - Binomial[n+k-1, k - 1]]];
A047074[n_]:= Sum[A[j, n-j], {j, 0, Floor[n/2]}] +Boole[n==0];
Table[A047074[n], {n, 0, 50}] (* G. C. Greubel, Oct 29 2022 *)
PROG
(Magma)
b:= func< n | n eq 0 select 1 else 2*Catalan(n-1) >;
function A(n, k)
if k eq n then return b(n);
elif k gt n then return Binomial(n+k-1, n) - Binomial(n+k-1, n-1);
else return Binomial(n+k-1, k) - Binomial(n+k-1, k-1);
end if; return A;
end function;
[(&+[A(j, n-j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 29 2022
(SageMath)
def A047072(n, k): # array
if (k==n): return 2*catalan_number(n-1) + 2*int(n==0)
elif (k>n): return binomial(n+k-1, n) - binomial(n+k-1, n-1)
else: return binomial(n+k-1, k) - binomial(n+k-1, k-1)
def A047074(n): return sum( A047072(j, n-j) for j in range((n//2)+1) )
[A047074(n) for n in range(51)] # G. C. Greubel, Oct 29 2022
CROSSREFS
Sequence in context: A058638 A201218 A139140 * A303766 A181883 A021311
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extra leading 1 removed by Sean A. Irvine, May 11 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 17:27 EST 2024. Contains 370307 sequences. (Running on oeis4.)