login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139140
For n>=1, a(n) = d(p(n)+1) + d(p(n)+2) + d(p(n)+3) + ... + d(p(n+1)), where d(m) is the number of positive divisors of m and p(n) is the n-th prime. a(0) = d(1) + d(2).
3
3, 2, 5, 6, 13, 8, 15, 8, 16, 27, 10, 29, 18, 10, 18, 31, 30, 14, 31, 20, 14, 30, 21, 34, 48, 23, 10, 22, 14, 24, 83, 22, 38, 10, 61, 14, 40, 36, 20, 41, 34, 20, 60, 16, 23, 14, 82, 72, 27, 14, 26, 36, 22, 58, 45, 36, 40, 18, 42, 28, 10, 67, 98, 26, 18, 24, 101, 42, 64, 14, 34
OFFSET
0,1
FORMULA
For n>=1, a(n) = Sum_{k=1..p(n+1)} (floor(p(n+1)/k) - floor(p(n)/k)), where p(n) is the n-th prime.
a(n) = A006218(A000040(n+1)) - A006218(A000040(n)), n>0. - R. J. Mathar, Apr 16 2008
EXAMPLE
The 9th prime is 23 and the 10th prime is 29. So a(9) = d(24) + d(25) + d(26) + d(27) + d(28) + d(29) = 8 + 3 + 4 + 4 + 6 + 2 = 27.
MAPLE
A000005 := proc(n) numtheory[tau](n) ; end: A006218 := proc(n) local k ; add(A000005(k), k=1..n) ; end: A139140 := proc(n) if n = 0 then RETURN(3) ; else A006218( ithprime(n+1))-A006218(ithprime(n)) ; fi ; end: seq(A139140(n), n=0..100) ; # R. J. Mathar, Apr 16 2008
MATHEMATICA
nn=80; Join[{3}, With[{nds=Table[DivisorSigma[0, n], {n, Prime[nn+1]}]}, Table[ Total[Take[nds, {Prime[n]+1, Prime[n+1]}]], {n, nn}]]] (* Harvey P. Dale, May 07 2012 *)
PROG
(Python)
from sympy import divisor_count, prime
def A139140(n): return sum(divisor_count(k) for k in range(prime(n)+1, prime(n+1)+1)) if n else 3 # Chai Wah Wu, Oct 23 2023
CROSSREFS
Cf. A139141.
Sequence in context: A050061 A058638 A201218 * A047074 A303766 A181883
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 10 2008
EXTENSIONS
More terms from R. J. Mathar, Apr 16 2008
STATUS
approved