OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(q, -q^2) / f(-q, q^2) in powers of q where f(,) is Ramanujan's two-variable theta function. - Michael Somos, Apr 04 2015
Expansion of eta(q^2)^5 * eta(q^3)^2 * eta(q^12)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^6)^5) in powers of q.
Euler transform of period 12 sequence [ 2, -3, 0, -1, 2, 0, 2, -1, 0, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132002. - Michael Somos, Apr 04 2015
G.f.: (Sum_{k in Z} x^k^2) / (Sum_{k in Z} x^(3*k^2)).
G.f.: Product_{k>0} P(12, x^k)^2 / (P(3, x^k) * P(6, x^k)^3) where P(n, x) is n-th cyclotomic polynomial.
Convolution inverse of A132002. - Michael Somos, Apr 04 2015
a(n) = (-1)^n * A252706(n). - Michael Somos, Apr 04 2015
EXAMPLE
G.f. = 1 + 2*q - 2*q^3 - 2*q^4 + 4*q^6 + 4*q^7 - 6*q^9 - 8*q^10 + 10*q^12 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^3], {q, 0, n}]; (* Michael Somos, Apr 04 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^2 * eta(x^12 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)^5), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 10 2008
STATUS
approved