OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q^2)^3 * eta(q^6)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (108 t)) = 3^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A139136.
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
q - q^4 + 2*q^7 - 4*q^10 + 6*q^13 - 9*q^16 + 14*q^19 - 20*q^22 + 29*q^25 + ...
MATHEMATICA
A139135[n_] := SeriesCoefficient[(QPochhammer[q]* QPochhammer[q^3]*QPochhammer[q^4]*QPochhammer[q^12])/(QPochhammer[q^2]^3 *QPochhammer[q^6]), {q, 0, n}]; Table[A139135[n], {n, 0, 50}] (* G. C. Greubel, Oct 05 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x^2 + A)^3 * eta(x^6 + A)), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 10 2008
STATUS
approved