login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139135
Expansion of psi(-q^3) / f(q) where psi(), f() are Ramanujan theta functions.
9
1, -1, 2, -4, 6, -9, 14, -20, 29, -42, 58, -80, 110, -148, 198, -264, 347, -454, 592, -764, 982, -1257, 1598, -2024, 2554, -3206, 4010, -5000, 6208, -7684, 9484, -11664, 14306, -17501, 21346, -25972, 31526, -38170, 46112, -55588, 66861, -80258, 96154, -114968, 137212
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q^2)^3 * eta(q^6)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (108 t)) = 3^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A139136.
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
q - q^4 + 2*q^7 - 4*q^10 + 6*q^13 - 9*q^16 + 14*q^19 - 20*q^22 + 29*q^25 + ...
MATHEMATICA
A139135[n_] := SeriesCoefficient[(QPochhammer[q]* QPochhammer[q^3]*QPochhammer[q^4]*QPochhammer[q^12])/(QPochhammer[q^2]^3 *QPochhammer[q^6]), {q, 0, n}]; Table[A139135[n], {n, 0, 50}] (* G. C. Greubel, Oct 05 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x^2 + A)^3 * eta(x^6 + A)), n))}
CROSSREFS
A139136(3*n + 1) = - a(n). A139137(3*n + 1) = 2 * a(n).
Apart from signs, same as A097197.
Sequence in context: A069916 A153140 A295341 * A097197 A260600 A119737
KEYWORD
sign
AUTHOR
Michael Somos, Apr 10 2008
STATUS
approved