|
|
A069916
|
|
Number of log-concave compositions (ordered partitions) of n.
|
|
34
|
|
|
1, 1, 2, 4, 6, 9, 14, 20, 26, 36, 47, 60, 80, 102, 127, 159, 194, 236, 291, 355, 425, 514, 611, 718, 856, 1009, 1182, 1381, 1605, 1861, 2156, 2496, 2873, 3299, 3778, 4301, 4902, 5574, 6325, 7176, 8116, 9152, 10317, 11610, 13028, 14611, 16354, 18259, 20365
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
These are compositions with weakly decreasing first quotients, where the first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3). - Gus Wiseman, Mar 16 2021
|
|
LINKS
|
|
|
EXAMPLE
|
Out of the 8 compositions of 4, only 2+1+1 and 1+1+2 are not log-concave, so a(4)=6.
The a(1) = 1 through a(6) = 14 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(1111) (122) (51)
(131) (123)
(221) (132)
(11111) (141)
(222)
(231)
(321)
(1221)
(111111)
(End)
|
|
MATHEMATICA
|
(* This program is not suitable for computing a large number of terms *)
compos[n_] := Permutations /@ IntegerPartitions[n] // Flatten[#, 1]&;
logConcaveQ[p_] := And @@ Table[p[[i]]^2 >= p[[i-1]]*p[[i+1]], {i, 2, Length[p]-1}]; a[n_] := Count[compos[n], p_?logConcaveQ]; Table[an = a[n]; Print["a(", n, ") = ", an]; a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 29 2016 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], GreaterEqual@@Divide@@@Reverse/@Partition[#, 2, 1]&]], {n, 0, 15}] (* Gus Wiseman, Mar 15 2021 *)
|
|
PROG
|
(Sage) def A069916(n) : return sum(all(p[i]^2 >= p[i-1] * p[i+1] for i in range(1, len(p)-1)) for p in Compositions(n)) # Eric M. Schmidt, Sep 29 2013
|
|
CROSSREFS
|
The version for differences instead of quotients is A070211.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A002843 counts compositions with adjacent parts x <= 2y.
A003238 counts chains of divisors summing to n-1, with strict case A122651.
A003242 counts anti-run compositions.
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors summing to n.
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|