login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167865 Number of partitions of n into distinct parts greater than 1, with each part divisible by the next. 23
1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 3, 3, 3, 1, 5, 1, 5, 4, 3, 1, 6, 2, 5, 4, 5, 1, 9, 1, 6, 4, 4, 4, 8, 1, 6, 6, 7, 1, 11, 1, 8, 8, 4, 1, 10, 3, 10, 5, 8, 1, 11, 4, 10, 7, 6, 1, 13, 1, 10, 11, 7, 6, 15, 1, 9, 5, 11, 1, 14, 1, 9, 12, 8, 5, 15, 1, 16, 9, 8, 1, 18, 5, 12, 7, 10, 1, 21, 7, 13, 11, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Number of lone-child-avoiding achiral rooted trees with n + 1 vertices, where a rooted tree is lone-child-avoiding if all terminal subtrees have at least two branches, and achiral if all branches directly under any given vertex are equal. The Matula-Goebel numbers of these trees are given by A331967. - Gus Wiseman, Feb 07 2020

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.

FORMULA

a(0) = 1 and for n>=1, a(n) = Sum_{d|n, d>1} a((n-d)/d).

G.f. A(x) satisfies: A(x) = 1 + x^2*A(x^2) + x^3*A(x^3) + x^4*A(x^4) + ... - Ilya Gutkovskiy, May 09 2019

EXAMPLE

a(12) = 4: [12], [10,2], [9,3], [8,4].

a(14) = 3: [14], [12,2], [8,4,2].

a(18) = 5: [18], [16,2], [15,3], [12,6], [12,4,2].

From Gus Wiseman, Jul 13 2018: (Start)

The a(36) = 8 lone-child-avoiding achiral rooted trees with 37 vertices:

  (oooooooooooooooooooooooooooooooooooo)

  ((oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo))

  ((ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo))

  ((ooooo)(ooooo)(ooooo)(ooooo)(ooooo)(ooooo))

  ((oooooooo)(oooooooo)(oooooooo)(oooooooo))

  (((ooo)(ooo))((ooo)(ooo))((ooo)(ooo))((ooo)(ooo)))

  ((ooooooooooo)(ooooooooooo)(ooooooooooo))

  ((ooooooooooooooooo)(ooooooooooooooooo))

(End)

MAPLE

with(numtheory):

a:= proc(n) option remember;

      `if`(n=0, 1, add(a((n-d)/d), d=divisors(n) minus{1}))

    end:

seq(a(n), n=0..200);  # Alois P. Heinz, Mar 28 2011

MATHEMATICA

a[0] = 1; a[n_] := a[n] = DivisorSum[n, a[(n-#)/#]&, #>1&]; Table[a[n], {n, 0, 100}] (* Jean-Fran├žois Alcover, Oct 07 2015 *)

PROG

(PARI) { A167865(n) = if(n==0, return(1)); sumdiv(n, d, if(d>1, A167865((n-d)\d) ) ) }

CROSSREFS

Cf. A001678, A067824, A122651, A167439, A167865, A167866, A184998, A316782.

The semi-achiral version is A320268.

Matula-Goebel numbers of these trees are A331967.

The semi-lone-child-avoiding version is A331991.

Achiral rooted trees are counted by A003238.

Cf. A000081, A000669, A289079, A320222, A331912, A331933, A331936, A331992.

Sequence in context: A303428 A223853 A023645 * A218654 A054571 A126865

Adjacent sequences:  A167862 A167863 A167864 * A167866 A167867 A167868

KEYWORD

nonn,look,changed

AUTHOR

Max Alekseyev, Nov 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 00:49 EST 2020. Contains 331976 sequences. (Running on oeis4.)