login
A289079
Number of orderless same-trees of weight n with all leaves equal to 1.
20
1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 13, 1, 3, 3, 22, 1, 16, 1, 15, 3, 3, 1, 151, 2, 3, 6, 17, 1, 41, 1, 334, 3, 3, 3, 637, 1, 3, 3, 275, 1, 56, 1, 21, 19, 3, 1, 15591, 2, 27, 3, 23, 1, 902, 3, 516, 3, 3, 1, 7858, 1, 3, 21, 69109, 3, 98, 1, 27, 3, 67, 1, 811756, 1
OFFSET
1,4
COMMENTS
a(n) is also the number of orderless same-trees of weight n with all leaves greater than 1.
LINKS
FORMULA
a(1) = 1, a(n>1) = Sum_{d|n, d>1} binomial(a(n/d)+d-1, d).
EXAMPLE
The a(12)=13 orderless same-trees with all leaves greater than 1 are: ((33)(33)), ((33)(222)), ((33)6), ((222)(222)), ((222)6), (66), ((22)(22)(22)), ((22)(22)4), ((22)44), (444), (3333), (222222), 12.
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=1, 1, add(
binomial(a(n/d)+d-1, d), d=divisors(n) minus {1}))
end:
seq(a(n), n=1..80); # Alois P. Heinz, Jul 05 2017
MATHEMATICA
a[n_]:=If[n===1, 1, Sum[Binomial[a[n/d]+d-1, d], {d, Rest[Divisors[n]]}]];
Array[a, 100]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = sumdiv(n, d, binomial(v[n/d]+d-1, d))); v} \\ Andrew Howroyd, Aug 20 2018
(Python)
from sympy import divisors, binomial
l=[0, 1]
for n in range(2, 101): l+=[sum([binomial(l[n//d] + d - 1, d) for d in divisors(n)[1:]]), ]
l[1:] # Indranil Ghosh, Jul 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 23 2017
STATUS
approved