login
A316782
Number of achiral tree-factorizations of n.
13
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
A factorization of n is a finite nonempty multiset of positive integers greater than 1 with product n. An achiral tree-factorization of n is either (case 1) the number n itself or (case 2) a finite constant multiset of two or more achiral tree-factorizations, one of each factor in a factorization of n.
a(n) is also the number of ways to write n as a left-nested power-tower ((a^b)^c)^... of positive integers greater than one. For example, the a(64) = 6 ways are 64, 8^2, 4^3, 2^6, (2^3)^2, (2^2)^3.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018
LINKS
FORMULA
a(n) = 1 + Sum_{n = d^k, k>1} a(d).
a(p^n) = A067824(n) for prime p. - Andrew Howroyd, Nov 18 2018
EXAMPLE
The a(1296) = 4 achiral tree-factorizations are 1296, (36*36), (6*6*6*6), ((6*6)*(6*6)).
MATHEMATICA
a[n_]:=1+Sum[a[d], {d, n^(1/Rest[Divisors[GCD@@FactorInteger[n][[All, 2]]]])}];
Array[a, 100]
PROG
(PARI) a(n)={my(z, e=ispower(n, , &z)); 1 + if(e, sumdiv(e, d, if(d<e, a(z^d))))} \\ Andrew Howroyd, Nov 18 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 13 2018
STATUS
approved