login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316779
Expansion of 1 + (1/(1-x) + 1/(1-3*x))*x/2 + (1/(1-x) - 8/(1-2*x) + 9/(1-3*x))*x^5/2.
0
1, 1, 2, 5, 14, 42, 128, 390, 1184, 3582, 10808, 32550, 97904, 294222, 883688, 2653110, 7963424, 23898462, 71711768, 215168070, 645569744, 1936840302, 5810783048, 17432873430, 52299668864, 156901103742, 470707505528, 1412130905190, 4236409492784, 12709262032782, 38127853207208
OFFSET
0,3
LINKS
Nickolas Hein, Jia Huang, Nonassociativity measurements of some binary operations, arXiv:1807.04623 [math.CO], 2018. See Proposition 2.10 p. 9 (and line 2, page 6 for the x factor in the g.f.)
FORMULA
a(n) = 1 + 5*3^(n-3) - 2^(n-3), n>=3.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3), n>=6.
MATHEMATICA
CoefficientList[Series[1 + (1/(1 - x) + 1/(1 - 3 x)) x/2 + (1/(1 - x) - 8/(1 - 2 x) + 9/(1 - 3 x)) x^5/2, {x, 0, 30}], x] (* or *)
LinearRecurrence[{6, -11, 6}, {1, 1, 2, 5, 14, 42}, 31] (* Michael De Vlieger, Jul 13 2018 *)
PROG
(PARI) Vec(1 + (1/(1-x) + 1/(1-3*x))*x/2 + (1/(1-x) - 8/(1-2*x) + 9/(1-3*x))*x^5/2 + O(x^40)) \\ Michel Marcus, Jul 13 2018
CROSSREFS
Sequence in context: A148326 A148327 A092493 * A344571 A148328 A290134
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Jul 13 2018
STATUS
approved