login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316784
Number of orderless identity tree-factorizations of n.
2
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 10, 1, 2, 2, 4, 1, 8, 1, 6, 2, 2, 2, 13, 1, 2, 2, 10, 1, 8, 1, 4, 4, 2, 1, 26, 1, 4, 2, 4, 1, 10, 2, 10, 2, 2, 1, 28, 1, 2, 4, 13, 2, 8, 1, 4, 2, 8, 1, 46, 1, 2, 4, 4, 2, 8, 1, 26, 3, 2, 1
OFFSET
1,6
COMMENTS
A factorization of n is a finite nonempty multiset of positive integers greater than 1 with product n. An orderless identity tree-factorization of n is either (case 1) the number n itself or (case 2) a finite set of two or more distinct orderless identity tree-factorizations, one of each factor in a factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018
LINKS
FORMULA
a(p^n) = A300660(n) for prime p. - Andrew Howroyd, Nov 18 2018
EXAMPLE
The a(24)=10 orderless identity tree-factorizations:
24
(4*6)
(3*8)
(2*12)
(2*3*4)
(4*(2*3))
(3*(2*4))
(2*(2*6))
(2*(3*4))
(2*(2*(2*3)))
MATHEMATICA
postfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[postfacs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
oltsfacs[n_]:=If[n<=1, {{}}, Prepend[Select[Union@@Function[q, Sort/@Tuples[oltsfacs/@q]]/@DeleteCases[postfacs[n], {n}], UnsameQ@@#&], n]];
Table[Length[oltsfacs[n]], {n, 100}]
PROG
(PARI) seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += binomial(w[k], e)*v[i]))); w} \\ Andrew Howroyd, Nov 18 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 13 2018
STATUS
approved