login
A293222
a(n) = Product_{d|n, d<n} A019565(A289814(d)); a product obtained from the 2-digits present in ternary expansions of proper divisors of n.
13
1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 6, 1, 6, 2, 12, 1, 6, 1, 4, 3, 4, 1, 36, 2, 2, 1, 12, 1, 36, 1, 36, 2, 12, 6, 30, 1, 10, 1, 240, 1, 180, 1, 20, 6, 20, 1, 1620, 3, 60, 6, 60, 1, 30, 4, 72, 5, 4, 1, 360, 1, 2, 15, 72, 2, 180, 1, 36, 10, 144, 1, 2700, 1, 2, 90, 20, 6, 180, 1, 720, 1, 4, 1, 540, 12, 6, 2, 720, 1, 900, 3, 100, 1, 20, 10, 16200, 1, 60, 6
OFFSET
1,4
LINKS
FORMULA
a(n) = Product_{d|n, d<n} A019565(A289814(d)).
PROG
(PARI)
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From _Remy Sigrist_
A293222(n) = { my(m=1); fordiv(n, d, if(d < n, m *= A019565(A289814(d)))); m; };
CROSSREFS
Cf. A019565, A289814, A293221, A293224 (restricted growth sequence transform), A293226.
Sequence in context: A295279 A316784 A284974 * A305008 A245037 A161311
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Oct 03 2017
STATUS
approved