login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305008 Triangle read by rows of coefficients for functions and generating functions for the number of achiral color patterns (set partitions) for a row or loop of varying length using exactly n colors (sets). 5
1, 1, 1, 1, 1, 0, 1, 2, -1, -2, 1, 2, -1, -4, -2, 1, 3, -3, -11, 0, 6, 1, 3, -3, -17, -8, 20, 16, 1, 4, -6, -32, 1, 64, 20, -20, 1, 4, -6, -44, -19, 140, 136, -120, -132, 1, 5, -10, -70, 5, 301, 152, -396, -280, 28, 1, 5, -10, -90, -35, 541, 608, -1228, -1752, 800, 1216, 1, 6, -15, -130, 15, 966, 643, -2798 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Triangle begins with T(0,0).

Two color patterns are equivalent if we permute the colors. Achiral color patterns must be equivalent if we reverse the order of the pattern.

The generating function for exactly n colors (column n of A304972) is

  x^n * Sum_{k=0..n} (T(n, k) * x^k) / Product_{k=1..n} (1 - k*x^2).

Both the numerator and denominator of this g.f. have factors of (1+x) and (1-(n-2)*x^2) when n > 2.

Letting S2(m,n) be the Stirling subset number A008277(m,n), the function for exactly n colors for a row or loop of length m, A304972(m,n), n even, is

  [m==0 mod 2] * Sum_{k=0..n/2} T(n, 2k) * S2((m+n)/2-k, n) +

  [m==1 mod 2] * Sum_{k=1..n/2} T(n, 2k-1) * S2((m+n+1)/2-k, n).

When n is odd, the function for A304972(m,n) is

  [m==0 mod 2] * Sum_{k=0..(n-1)/2} T(n, 2k+1) * S2((m+n-1)-k, n) +

  [m==1 mod 2] * Sum_{k=0..(n-1)/2} T(n, 2k) * S2((m+n)/2-k, n).

LINKS

Table of n, a(n) for n=0..73.

FORMULA

T(n,k) = [1 <= k <= n] * (T(n-1, k-1) + T(n-2, k) - (n-1) * T(n-2, k-2)) + [k==0 & n>=0].

EXAMPLE

Triangle begins:

1;

1, 1;

1, 1,   0;

1, 2,  -1,   -2;

1, 2,  -1,   -4,  -2;

1, 3,  -3,  -11,   0,   6;

1, 3,  -3,  -17,  -8,  20,  16;

1, 4,  -6,  -32,   1,  64,  20,   -20;

1, 4,  -6,  -44, -19, 140, 136,  -120,  -132;

1, 5, -10,  -70,   5, 301, 152,  -396,  -280,   28;

1, 5, -10,  -90, -35, 541, 608, -1228, -1752,  800, 1216;

1, 6, -15, -130,  15, 966, 643, -2798, -3028, 2236, 3600, 936;

MATHEMATICA

Coef[n_, -1] := Coef[n, -1] = 0; Coef[n_, 0] := Coef[n, 0] = Boole[n>=0];

Coef[n_, k_] := Coef[n, k] = If[k > n, 0, Coef[n-1, k-1] + Coef[n-2, k] - (n-1) Coef[n-2, k-2]]

Table[Coef[n, k], {n, 0, 30}, {k, 0, n}] // Flatten

CROSSREFS

Coefficients for functions and generating functions of A304973, A304974, A304975, A304976, which are columns 3-6 of A304972.

Sequence in context: A316784 A284974 A293222 * A245037 A161311 A161245

Adjacent sequences:  A305005 A305006 A305007 * A305009 A305010 A305011

KEYWORD

sign,tabl,easy

AUTHOR

Robert A. Russell, May 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 04:51 EDT 2021. Contains 346348 sequences. (Running on oeis4.)