login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305006
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k*(1 + x^k)).
1
1, -1, 4, -5, 6, -2, 8, -13, 13, -3, 12, -5, 14, -4, 8, -29, 18, -13, 20, -3, 32, -6, 24, -13, 31, -7, 40, -10, 30, -4, 32, -61, 16, -9, 48, -65, 38, -10, 56, -39, 42, -16, 44, -15, 26, -12, 48, -29, 57, -31, 24, -35, 54, -20, 72, -13, 80, -15, 60, -2, 62, -16, 104, -125, 84
OFFSET
1,3
FORMULA
Numerators of coefficients in expansion of log(Sum_{k>=0} x^(k*(k+1)/2)) = log(Product_{k>=1} (1 - x^(2*k))/(1 - x^(2*k-1))).
Numerators of coefficients in expansion of log(theta_2(sqrt(x))/(2*x^(1/8))), where theta_2() is the Jacobi theta function.
a(n) = numerator of Sum_{d|n} (-1)^(n/d+1)/d.
a(n) = numerator of Sum_{d|n} (-1)^(d+1)*d/n.
a(n) = numerator of A002129(n)/n.
a(p) = p + 1 where p is an odd prime.
EXAMPLE
1, -1/2, 4/3, -5/4, 6/5, -2/3, 8/7, -13/8, 13/9, -3/5, 12/11, -5/3, 14/13, -4/7, 8/5, -29/16, 18/17, -13/18, 20/19, ...
MATHEMATICA
nmax = 65; Rest[Numerator[CoefficientList[Series[Sum[x^k/(k (1 + x^k)), {k, 1, nmax}], {x, 0, nmax}], x]]]
nmax = 65; Rest[Numerator[CoefficientList[Series[Log[Product[(1 - x^(2 k))/(1 - x^(2 k - 1)), {k, 1, nmax}]], {x, 0, nmax}], x]]]
nmax = 65; Rest[Numerator[CoefficientList[Series[Log[EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8))], {x, 0, nmax}], x]]]
Numerator[Table[Sum[(-1)^(n/d + 1) 1/d, {d, Divisors[n]}], {n, 65}]]
Numerator[Table[DivisorSum[n, -(-1)^# # &]/n, {n, 65}]]
PROG
(PARI) a(n) = numerator(sumdiv(n, d, (-1)^(d+1)*d/n)); \\ Michel Marcus, May 24 2018
(Magma) [Numerator(&+[(-1)^(d+1)*d/n: d in Divisors(n)]): n in [1..100]]; // Vincenzo Librandi, May 24 2018
CROSSREFS
Sequence in context: A106592 A106593 A276036 * A338688 A010665 A346832
KEYWORD
sign,frac
AUTHOR
Ilya Gutkovskiy, May 23 2018
STATUS
approved