OFFSET
1,2
FORMULA
Denominators of coefficients in expansion of log(Sum_{k>=0} x^(k*(k+1)/2)) = log(Product_{k>=1} (1 - x^(2*k))/(1 - x^(2*k-1))).
Denominators of coefficients in expansion of log(theta_2(sqrt(x))/(2*x^(1/8))), where theta_2() is the Jacobi theta function.
a(n) = denominator of Sum_{d|n} (-1)^(n/d+1)/d.
a(n) = denominator of Sum_{d|n} (-1)^(d+1)*d/n.
a(n) = denominator of A002129(n)/n.
a(p^k) = p^k where p is a prime.
EXAMPLE
1, -1/2, 4/3, -5/4, 6/5, -2/3, 8/7, -13/8, 13/9, -3/5, 12/11, -5/3, 14/13, -4/7, 8/5, -29/16, 18/17, -13/18, 20/19, ...
MATHEMATICA
nmax = 75; Rest[Denominator[CoefficientList[Series[Sum[x^k/(k (1 + x^k)), {k, 1, nmax}], {x, 0, nmax}], x]]]
nmax = 75; Rest[Denominator[CoefficientList[Series[Log[Product[(1 - x^(2 k))/(1 - x^(2 k - 1)), {k, 1, nmax}]], {x, 0, nmax}], x]]]
nmax = 75; Rest[Denominator[CoefficientList[Series[Log[EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8))], {x, 0, nmax}], x]]]
Denominator[Table[Sum[(-1)^(n/d + 1) 1/d, {d, Divisors[n]}], {n, 75}]]
Denominator[Table[DivisorSum[n, -(-1)^# # &]/n, {n, 75}]]
PROG
(PARI) a(n) = denominator(sumdiv(n, d, (-1)^(d+1)*d/n)); \\ Michel Marcus, May 24 2018
(Magma) [Denominator(&+[(-1)^(d+1)*d/n: d in Divisors(n)]): n in [1..100]]; // Vincenzo Librandi, May 24 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, May 23 2018
STATUS
approved