

A106592


Sixsymbol substitution based on doubling the Rauzy substitution : n=2 characteristic polynomial: x^69*x^4+24*x^216.


0



1, 4, 5, 6, 2, 2, 3, 3, 1, 2, 3, 4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 6, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 1, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 6, 4, 4, 5, 5, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Triangular Form: {1}, {4, 5, 6}, {2, 2, 3, 3, 1, 2, 3}, {4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 6, 4, 4, 5, 5}, {2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 1, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3}


REFERENCES

Curtis McMullen, Prym varieties and Teichmuller curves.


LINKS

Table of n, a(n) for n=0..104.


FORMULA

1>{4.5.6}, 2>{4}*n, 3>{5}, 4>{2}, 5>{3}.n 6>{1, 2, 3}


MATHEMATICA

n0=6 n=2 s[1] = {4, 5, 6}; s[2] = Table[If[i <= n, 4, {}], {i, 1, n0}]; s[3] = Table[If[i <= n, 5, {}], {i, 1, n0}]; s[4] = Table[If[i <= n, 2, {}], {i, 1, n0}]; s[5] = Table[If[i <= n, 3, {}], {i, 1, n0}]; s[6] = {1, 2, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]] aa = Table[p[i], {i, 0, 4}]; MatrixForm[aa] aaa = Flatten[aa]


CROSSREFS

Sequence in context: A076087 A082486 A106591 * A106593 A276036 A305006
Adjacent sequences: A106589 A106590 A106591 * A106593 A106594 A106595


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, May 10 2005


STATUS

approved



