login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106594
a(n) = number of primitive solutions to 4n+1 = x^2 + y^2.
4
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 0, 1, 2, 0, 0, 1, 0, 1
OFFSET
1,16
COMMENTS
"Primitive" means that x and y are positive and mutually prime.
LINKS
EXAMPLE
E.g. a(16)=2 because 65 = 8^2+1^2 = 7^2+4^2. a(11)=0 because although 45=6^2+3^2, 6 and 3 are not mutually prime. a(2)=0 because although 9=3^2+0^2, 0 is not positive.
MAPLE
A106594 := proc(n)
local a, x, y, fourn;
fourn := 4*n+1 ;
a := 0 ;
for x from 1 do
if x^2 >= fourn then
return a;
else
y := fourn-x^2 ;
if issqr(y) then
y := sqrt(y) ;
if y <= x and igcd(x, y) = 1 then
a := a+1 ;
end if;
end if;
end if;
end do:
end proc: # R. J. Mathar, Sep 21 2013
MATHEMATICA
Table[Length[If[CoprimeQ[#[[1]], #[[2]]], #, Nothing]&/@Union[Sort/@ ({#[[1, 2]], #[[2, 2]]}&/@FindInstance[{4 n+1==x^2+y^2, x>0, y>0}, {x, y}, Integers, 10])]], {n, 100}] (* Harvey P. Dale, Jun 29 2021 *)
CROSSREFS
Sequence in context: A285680 A240668 A106602 * A357070 A341026 A143251
KEYWORD
easy,nonn
AUTHOR
Colin Mallows, May 10 2005
STATUS
approved