login
A240668
Number of the first odd exponents in the prime power factorization of (2*n)!.
16
1, 2, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 1, 2, 0, 1, 0, 0, 2, 0, 3, 3, 0, 0, 1, 2, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 5, 0, 1, 0, 0, 3, 0, 1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 3, 0, 1, 2, 0, 3, 0, 0, 2, 0, 5, 2, 0, 0, 1, 3, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 4
OFFSET
1,2
COMMENTS
According to Chen's theorem, the sequence is unbounded.
LINKS
D. Berend, Parity of exponents in the factorization of n!, J. Number Theory, 64 (1997), 13-19.
Y.-G. Chen, On the parity of exponents in the standard factorization of n!, J. Number Theory, 100 (2003), 326-331.
FORMULA
a(n)*A240606(n) = 0.
EXAMPLE
32! = 2^31*3^14*5^7*7^4*11^2*13^2*17*19*23*29*31, and only the first 1 exponent is odd, so a(16) = 1.
MATHEMATICA
Map[Count[First[Split[Mod[Last[Transpose[FactorInteger[(2*#)!]]], 2]]], 1]&, Range[75]] (* Peter J. C. Moses, Apr 10 2014 *)
PROG
(PARI) a(n) = {my(f = factor((2*n)!)); my(nb = 0); my(i = 1); while((i <= #f~) && (f[i, 2] % 2), nb++; i++; ); nb; } \\ Michel Marcus, Apr 10 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 10 2014
EXTENSIONS
More terms from Michel Marcus, Apr 10 2014
STATUS
approved