login
A377432
Number of perfect-powers x in the range prime(n) < x < prime(n+1).
18
0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
OFFSET
1,4
COMMENTS
Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.
FORMULA
a(n) + A377433(n) = A046933(n) = prime(n+1) - prime(n) - 1.
EXAMPLE
Between prime(4) = 7 and prime(5) = 11 we have perfect-powers 8 and 9, so a(4) = 2.
MATHEMATICA
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All, 2]]>1;
Table[Length[Select[Range[Prime[n]+1, Prime[n+1]-1], perpowQ]], {n, 100}]
CROSSREFS
For prime-powers instead of perfect-powers we have A080101.
Non-perfect-powers in the same range are counted by A377433.
Positions of 1 are A377434.
Positions of 0 are A377436.
Positions of terms > 1 are A377466.
For powers of 2 instead of primes we have A377467, for prime-powers A244508.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053706, A053607, A304521, A377286.
A377468 gives the least perfect-power > n.
Sequence in context: A285709 A080101 A025895 * A104451 A285680 A240668
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 31 2024
STATUS
approved